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Examination 
“Electromagnetics and Numerical Calculation of Fields” 

 
March 3, 2008 

 
 

1. A vector is given in cylindrical coordinates as: 
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2. (a) Explain Gauss’ Law and Stokes’ Law with formulas and text. (4P) 
(b) Write down Maxwell’s equations in differential and integral form. (4P)  
(c) Derive the wave equation for 

! 

E  and 

! 

H  directly from Maxwell’s equations 
(lossless case, linear and isotropic material, 

! 

" = 0). (8P) 
 
Answer 
(a) 
Gauss’ Law: 

  

! 

div

r 
A dv =

r 
A d

r 
a ""  (1P) 

The volume integral of the divergence of a vector field   

! 

r 
A  equals the flux of this 

vector field through the surface enclosing this volume. (1P) 

(1P) 

(1P) 

(3P) 
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Stokes’ Law: 
  

! 
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The area integral of the normal component of   
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rot

r 
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line integral of   
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A  along the contour encircling the area. (1P) 

 
(b) 
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(c) 
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3. (a) What type of equation has to be solved for finding the electric potential 

! 

" 
of an arbitrary charge distribution 

! 

"(x,y,z)? (2P) 
(b) What are Dirichlet boundary conditions and Neumann boundary 
conditions? (2P) 
(c) What type of differential equation has to be solved for 

! 

", when a variable 
voltage is given on the surface of a metallic ball and no charge inside? Which 
coordinate system should be chosen? What type of functions do we get in this 
coordinate system? (4P) 
 
Answer 
(a) Poisson equation has to be solved: 

! 

"# = $
%

&
 

      or 
      Coulomb integral: 
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(b) Dirichlet boundary conditions: 

! 

"
boundary

= ˜ "   (1P) 

     Neumann boundary conditions: 

! 

"#

"n boundary

= ˜ #  (1P) 

(c) Laplace equation has to be solved: 

! 

"# = 0   (1P) 
     Spherical coordinate system could be a good choice. (1P) 

In spherical coordinates the solutions are linear combinations of the 
following functions: 
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r
l
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m
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m
(cos# ),  sin(m$) /cos(m$) , where 
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P
l

m  and 
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m  are 
associated Legendre Polynomials.   (2P) 

 
 

4. A long cylindrical conductor of radius 

! 

a = 20mm , charged with a surface charge 
density 

! 

"
a

= 0.01C /m
2 , is located in free space: 

(a) Calculate the energy stored per unit length of the conductor within a radius 

! 

b =100m from the conductor. (7P) 
(b) What is the energy per unit length stored inside the conductor? (3P) 
 
Answer 
(a) Using Gauss’ law, the electric field intensity at a distance 

! 

R from the 
cylinder is 
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Where the integration is over the area of the Gaussian surface 

! 

a . The electric 
field intensity is in the 

! 

R direction and equals 
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The energy density in space is therefore 
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We define a shell of thickness 

! 

dr  and length 

! 

L  and write the volume of this 
shell at 

! 

R as 

! 

dv = 2"RLdR. The total energy stored is then 

! 
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For 

! 

a = 0.02m , 

! 

b =100m, 

! 

"
s
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(b) The electrostatic energy stored in the conductor itself is zero because the 
electric field intensity inside the conductor is zero. (3P) 

 
 

5. (a) What is the meaning of the Poynting vector? (3P) 
(b) Calculate the Poynting vector of a plane wave that generates an electric 
field intensity 

  

! 

r 
E = "

r 
e y E

0
cos(#t " kz)[V /m]. What is the direction of propagation 

of this wave? (Lossless propagation in free space) (8P) 
Hint: Only consider the real part of   

! 

r 
E  and   

! 

r 
H  in the calculation. 

 
Answer 
(a) The Poynting vector is the power per area that is transmitted through a 

given area via electromagnetic fields. (3P) 
 
(b) First we have to find   

! 

r 
H (t,z). The electric field has only a 

! 

y  component and 
varies only with 

! 

z : 
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Using the phasor form (taking the real part) of   
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where 

! 

"
0
 is the impedance of vacuum. Then transform back to the time 

domain 
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The Poynting vector is 
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The direction of the Poynting vector, i.e. the direction of flow of power is the 

! 

z  
direction. This is also the direction of propagation of this wave. (1P) 

 
 
6. (a) What is a TEM wave? What are the characteristics of TM wave as well as 

of TE waves in a waveguide? What does the cut-off frequency for a specific 
mode in a waveguide mean? (4 P) 
(b) A rectangular waveguide has internal dimensions 

! 

a = 8.64mm  and 

! 

b = 4.32mm . Find the lowest possible mode at which the wave may be excited 
and calculate its cut-off frequency. (8P) 
(c) Give a sketch of the electric and magnetic field of the TM11 mode inside a 
rectangular waveguide. (3P) 
 
Answer 
(a) A TEM wave is a Transverse Electric and Magnetic wave, 

! 

E
z

= 0 and 

! 

H
z

= 0 , where 

! 

z  is the direction of propagation; For TM waves the magnetic 
field is completely transverse to the direction of propagation, 

! 

E
z
" 0 and 

! 

H
z

= 0 ; for TE waves the electric field is completely transverse to the direction 
of propagation, 

! 

E
z

= 0 and 

! 

H
z
" 0 . The cut-off frequency is the lowest 

frequency that allows for undamped propagation of waves for a specific mode. 
(4P) 
 
(b) The cut-off frequency is: 
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(1P) 

(1P) 
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Since 

! 

m  or 

! 

n  cannot be zero in TM modes and 

! 

a > b, the lowest possible 
model should be TE10 mode. (4P) 
Its cut-off frequency is: 

! 

fc11 =1.5 "108
1
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# 

$ 
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=17.361 GHz[ ]  (2P) 

 
(c) 

 (3P) 
 

 
7. Write down the wave equation of a scalar function 

! 

"(x, t)  in the general case 
and translate it into a finite difference approximation. Please also give the 
sketch of the “computing molecule” for this case. (8P)  
 
Answer 

Wave equation: 

! 

u
2 "

2
#

"x 2
=
" 2#

"t 2
 (1P) 

Translate in a finite difference equation: 

! 

u
2 "(i +1, j) # 2"(i, j) +"(i #1, j)

($x)
2

=
"(i, j +1) # 2"(i, j) +"(i, j #1)

($t)
2

"(i, j +1) = 2(1# r) % "(i, j) + r "(i +1, j) +"(i #1, j) #"(i, j #1)[ ]

 (2P) 

where 

! 

r =
u"t

"x
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2

 (1P) 

The computing molecule used here: 

  (4P) 
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8. (a) Describe how a scalar function (like 

! 

"(x)) can be approximated using 
linear node shape functions, with the aid of giving a sketch of linear node 
shape functions in 1D case. (4P) 
(b) Describe the basic idea and equations of the finite element method 
cooperating with the method of weighted residual in the case of solving the 
Poisson’s equation for piecewise homogenous materials. If the Galerkin’s 
choice is applied here, how should the weighting function look like? Derive the 
equation until the second derivative of 

! 

" is removed. (7P) 
 
Answer 
(a) 

 (3P) 

! 

˜ " = #k (x,y,z) $ "k

k=1

nodes

% , where 

! 

"
k
 is node potential. (1P) 

 
(b)  
Poisson’s equation: 

! 

"# = $
%

&
 (1P) 

Ideal solution: 

! 

"#+
$

%
= 0  (1P) 

Approximated solution: 

! 

" ˜ # +
$

%
= R  (1P) 

Best approximation: 

! 

w " Rdv = # ˜ $ +
%

&

' 

( 
) 

* 

+ 
, -- " wdv = 0 (1P) 

where 

! 

w is weighting function. 
Using Green’s 2nd law: 

! 

grad ˜ " ( )# $ (gradw)dv % w
& ˜ " 

&n
da %

'

(
## wdv = 0 (2P) 

In the Galerkin’s method, the weighting functions are chosen to be the basis 
functions: 

! 

wl (x,y,z) =" l (x,y,z). (1P) 
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9. What are the prerequisites for accuracy in numerical field calculation? What 
types of accuracy have to be checked? (5P) 

 
Answer 

 Prerequisites: 
1) Mesh must fit to the geometry of the problem (1P) 
2) Mesh must fit to the interpolation function    (1P) 
3) Time step must fit to the mesh    (1P) 
 
Test of accuracy: 
1) Numerical accuracy has to be checked (1P) 
2) “Physics accuracy” has to be checked (1P) 

 
 
 
 

1 2 3 4 5 6 7 8 9 Sum 
6 16 8 10 11 15 8 11 5 90 
          

 
 


