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1. In Cartesian coordinate system, prove that 
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 where 
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A  are scalar and vector fields, respectively. (Do not use the 

short-cut with the “direction of Nabla”.) 
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2. (a) Explain Gauss’ Law and Stokes’ Law with formulas and text. (4P) 
(b) Write down Maxwell’s equations in differential and integral form. (4P) 
(c) Derive the wave equation for 

! 

E  and 

! 

H  directly from Maxwell’s equations 
(lossless case, linear and isotropic material, 

! 

" = 0). (4P) 
 
Answer 
(a) Gauss’ Law: 
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Stokes’ Law: 
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3. (a) What is the definition of the Green’s function of a Dirichlet problem? How 
can we find the electric potential if the Green’s function is given? (4P) 

 (b) What is the definition of the Green’s function of a Neumann problem? How 
can we find the electric potential if the Green’s function is given? (4P) 
 

 Answer 
(a) Green’s function of a Dirichlet problem: 
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(b) Green’s function of a Neumann problem: 
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4. A point charge 

! 

Q is located at a point in space. The charge is surrounded by 
two spherical layers of materials as shown in the figure below. Both materials 
have permittivities different than free space, as indicated. 
(a) Give the electric flux density and field intensity everywhere in space (with 
Unit). (6P) 
(b) Plot the electric flux density and field intensity everywhere in space 
schematically. (4P) 

 
 
Answer 
(a) The electric flux density in all materials is radially oriented and equals 
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where 

! 

R is the distance from the point charge 

! 

Q. 
The electric field intensity in any material is 
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where 
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" is the permittivity of the corresponding material. For each material, we 
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(b)  
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5. A superconducting storage ring used for powering a city is made as a toroidal 
coil (see the figure below). The coil’s cross-sectional radius is 

! 

d =1 m, the 
radius of the torus is 

! 

r =1 km and 

! 

µ
r

=1 in the torus. The torus is wound with 

! 

N =150,000  turns of superconducting wire and can carry a current 

! 

I =100,000 A. 
 (a) Calculate the magnetic flux density in the torus. (2P) 
 (b) What is the total amount of energy stored in this torus? (5P) 
 (c) A city requires 

! 

100 MW  of power. How long can a storage ring of this type 
power the city in case of a blackout in power generation? Assume no losses in 
the conversion and the transportation of energy. (3P) 

  



 (Hint: the magnetic field strength in the torus can be considered constant along 
the radial direction approximately, since 

! 

r >> d .) 
 
 Answer 

(a) The flux density in the torus is 
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(b) The total flux in the torus is 
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The self-inductance of the storage ring is 
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(c) Since energy is power integrated over time and the city requires 

! 

100 MW , 
the energy needs of the city may be met for 

! 

t =
W

P
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7.07 "10
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6. (a) Give the equivalent circuit of a two-conductor lossy transmission line for a 
differential length 

! 

"z . (3P) 
 (b) Write down the wave equation for lossy transmission lines. (4P) 
 (c) Give a sketch of fields, charge and current distribution along a coaxial 

transmission line. (4P) 
 (d) Two striplines are connected as shown in the figure below. Both striplines 

are 30 mm wide. Assuming TM propagation, calculate the lowest frequency 
that can be propagated if the source is connect on side A of the structure and 
the lowest frequency that can be propagated if the source is connected on side 
B of the structure. (4P) 

  

  
  
 Answer 
 (a)  



  

(3P) 

  
 (b) 
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 where 

! 

" =# + j$ = (R + j%L)(G + j%C)  
  
 (c) 

 

(4P) 

  
 (d) The cut-off frequencies for TM10 mode in the two sections are 
 in the small guide: 

 

! 

fc1
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1
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=
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2 # 0.001
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 in the large guide: 
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=
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8
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 Since the small guide can only propagate above 150 GHz and the large guide 
above 75 GHz, the combined structure can only propagate above 150 GHz 
regardless of which side the source is connected on.  (2P) 

  
  

7. Write down the diffusion equation of a scalar function 

! 

"(x, t)  in the general 
case and translate it into a finite difference approximation (2D). Give the 
sketch of the “computing molecule” for this case. (7P) 

   
 Answer 

 Diffusion equation: 

! 

k
"#

"t
=
" 2#

"x 2
 (1P) 

Translate it in a finite difference equation: 

! 

k
"(i, j +1) #"(i, j)

$t
=
"(i +1, j) # 2"(i, j) +"(i #1, j)

($x)
2

"(i, j +1) = r"(i +1, j) + (1# 2r)"(i, j) + r"(i #1, j)

 (2P) 

where 

! 

r =
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k("x)
2
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The computing molecule used here: 
  

  

(3P) 

  
  

8. (a) Describe how a scalar function (like 

! 

"(x)) can be approximated using 
linear node shape functions, with the aid of giving a sketch of linear node 
shape functions in 1D case. (4P) 
(b) Describe the basic idea and equations of the finite element method 
cooperating with the method of weighted residual in the case of solving the 
Poisson’s equation for piecewise homogenous materials. If the Galerkin’s 
choice is applied here, how should the weighting function look like? Derive the 
equation until the second derivative of 

! 

" is removed. (7P) 
 
Answer 
(a) 



 (3P) 

! 
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! 

"
k
 is node potential. (1P) 

 
(b) Poisson’s equation: 

! 

"# = $
%

&
 (1P) 

Ideal solution: 

! 

"#+
$

%
= 0  (1P) 

Approximated solution: 
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Best approximation: 
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where 

! 

w is weighting function. 
Using Green’s 2nd law: 

! 

grad ˜ " ( )# $ (gradw)dv % w
& ˜ " 

&n
da %

'

(
## wdv = 0 (2P) 

In the Galerkin’s method, the weighting functions are chosen to be the basis 
functions: 

! 

wl (x,y,z) =" l (x,y,z). (1P) 
 
 

9. Comment on the typical number of nodes for the same type of problem but 
using FDM, FEM, BEM. Compare the matrices that describe the set of linear 
equations to be solved. (6P) 

  
 Answer 
 Since FDM uses a regular grid, the number of nodes is usually the largest, 

especially in case of very irregular geometries.  (1P) 
 FEM can use e.g. tetrahedrons with variable size and is very flexible to 

approximate irregular geometries with a small number of nodes. But the 
complete volume has to be discretisized.  (1P) 

 BEM only demands for a discretization of the surfaces and not the volumes. 
So the number of nodes is usually the smallest.  (1P) 



 FDM usually ends up with a very regular and sparse.  (1P) 
 FEM also ends up with a sparse matrix. Some tricks are needed to make the 

matrix diagonal dominant.  (1P) 
 BEM delivers a matrix with the smallest rank, but it is not sparse at all. All 

elements are non-zero.  (1P) 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 Sum 
6 12 8 10 10 15 7 11 6 85 
          

 


