A{]]

Karlsruhe Institute of Technology

Examination 2010

»,Electromagnetics and Numerical
Calculation of Fields*

March 9, 2010

Name:

Student number:




Exercise 1:
1 q

a.) Given is the potential ¢ = Tre >t 222
022 +y2 + 22

Calculate the electric Field E . (3pt)

- 4(z —y)
b.) Given is the electric flux density D = | 3(x + 2y) |.
2z

Calculate the charge density 2. ( 3 pt)

Exercise 2:

(a) What type of equation has to be solved for finding the electric potential ¢ of an
arbitrary charge distribution o(Z,¥,2) ? (2pt)

(b) What are Dirichlet boundary conditions and Neumann boundary conditions? ( 4 pt )



Exercise 3:

a.) Write down Gauss‘ law and Stokes‘ law and and show how to translate the Maxwell‘s equations
from differential form to integral form. ( 6 pt )

b.) Use the Gauss‘ law to prove the
first [ otvwya= [ a0+ (Vo) vuldo
s 1%

and second Green‘s identity: /SWQS — ¢Vypda = /v VAP — pAYdv (6 pt)

Hint: V(¢V1)) = ¢Ayp + (Vo) (V)

Exercise 4:

Derive the wave equation for E and H directly from the Maxwell‘s equations for vacuum
(p=0,7=0). (6pt)

Hint: rot rot F = grad div F — AF



Exercise 5:

Find the capacitance of a spherical capacitor (inner radius 7°;, the outer radii 71, 72 and the relative
dielectric constants €r1,€r2). (8 pt)

‘gm :

Exercise 6:

a.) Write down the sinusoidal plane-wave solutions of the electromagnetic wave equation for E
and H (two types of solutions). (4 pt)

b.) How can you find Ej if Hgis given ? (2 pt)

Exercise 7:

a.) What is the definition of the magnetic flux $mag and how can it be found directly from the
magnetic vector potential (use Stokes‘ law !) (4 pt)

b.) Assume a thin wire of arbitrary shape is given together with the current I in the wire. How can
you find the magnetic vector potential ? (4 pt)



Exercise 8:

A rectangular coil of length @ and width b is turning with constant angular velocity w inside a
homogenous field of magnetic induction B (see figure) . How large is the induced voltage?
What is the time course of the voltage? (4 pt)

/|7 9

Exercise 9:

a.) Write down the central difference approximation used in the Finite Difference Method (FDM)
for:

P 2
0 and - P

ox ox? -(4pt)

b.) Give a sketch of the computing molecule for the Laplace/Poisson equation (FDM).
Caption the axes.
Mark the values that are used to calculate the next value.
What does the computing molecule deliver ?
What do you do at the boundaries ? (8 pt)



Exercise 10:

a.) Describe the basic idea and equations of the Finite Element Method using Weighted Residuals
with Poisson‘s Equation as an example.
What is the Residuum? What was Galerkin's idea? ( 8 pt )

b). Describe how a scalar function @ can be approximated using linear node shape functions.

Give a sketch of the linear shape functions in 1D case. (6 pt)
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Solutions for Examination 2010
Electromagnetics and Numerical Calculations of Field

1a) ¢ = 41 : g —
T€o \/:1: +y+°+z

E=-V¢
@ 1 2xq
oxr  4mey 2(\/22 + 2 + 22)3
0o 1 2yq
dy dmeo 2(\/22 + y2 + 22)3
op 1 2zq

& a _47'('60 2(1 /2 +y2 +22)3
. 1 z
E = g Y

4meg (, /2 _|_y2 +22)3 .

1b)
VD =8,D, +8,D, +0.D, =4+6+2=12

2a) Poisson equation: Ag= -2
€0

or Coulomb Integral <I>(?)=$m'£fv'

: ¢ 2
2b) Neumann: an\boundmy = ¢n

On the boundaries the normal derivative of the potential is given.

Dirichlet: Olboundary = ¢

On the boundaries the potential is given.



3a)

Gauss: / div Ady = / Ada
Vv S

Stokes: /rot/fdﬁ: /z‘de’
S s

Maxwell:
divD = p — /divﬁdv = /ﬁdc_i: /pdv
divB = 0 — /dwédv = /éda =0
o 0 - S o 0 o
rotHk = ——B — | rotEdd = | EdSs=—— [ Bdd
ot ot

rotfl = J+ %5 R / rotHdi — / fds - / J+ 2 Byaa

3b)
First Green's Identity

/ (6AG + (Vo)(Vep)do = / V($V)dv = / oV da
Vv 1% S
Second Green's Identitiy

/ WV oVidd = / V(Y6 — $Vib)du

S 1%

_ /V AG + (V) (Vo) — AP — (V) (Veb)du

- / VAP — dAYdv
1%



rotf = -u 2 i
ot

—

rot rotE = -urot—H
ot
- Y Ja_ =
grad divE - AE = —uarotH

since divE =0

’’E

—> AE -ue——=0
at*

rotfil = 2 E
ot

—

rot rotﬁ =g rot 5 E

grad divH - AH = 8% rotE

since divH =0

The spherical capacitor can be treated as two partial spherical

capacitors in series.

Lo_1 1
C’totml Cl C’2

T1 T1 1
Uy :/ Edr :/ ¢ —dr
. o Amerieq r?

K3

c 41e, 1 €0
=TT

T4 T1

T2 T2 1
Us :/ Edr :/ @ —2dr
- - 4me0€q T

4Tep€Er1 €02

41e, 1 €0

4me, €0
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1 1
T T1

1 1
T T2



Ey — Eoej(wt—k:x)
H, = Hoej(wt—k;x)
or
Ey — Eoej(wt+kx)
H, = _Hoej(wt—l—kx)

6Db) Ey=TH, = \/g H,

7a)
Magnetic Flux:
b = Bda
S
E = rotff
= dm = / rotAda = / Ads
S S
7b)
Bio-Savart-Law:
ool 1 )
Alr) = 47?/57"—7"dv
8)

d

Uing = ——/ Bdi = —%(Babcos(w)) = Babwsin(wt)
S

dt



9a)

90| _ ®(i+1j)-(i-1)
ox 2Ax

%0 _ @(i+1))-20(ij)+i-1j)
ax2 (Ax)2

o
™

The computing molecule delivers one linear equation for each node
=> A linear equation system Ax = g has to be solved for the whole
system. Matrix A has size n*n for n nodes;

At the boundary, Dirichlet, Neumann or Mixed boundary
conditions have to be taken into account



10a)

Poisson’s equation: A® = - P

£

Ideal solution: AD + B =0

Approximated solution: A® + == R is the Residuum.

R
Best approximation: [w-Rdv = [ ( ) wdy =

where w is weighting function.
Using Green’s 2™ law:

f(grad(iJ)- (gradw)dv - gﬁw %da - I§de =0

In the Galerkin’s method, the weighting functions are chosen to be the basis
functions ( node shape functions): w,(x,y,z) = a,(x,y,z).

10b)

nodes
d= Eak(x,y,z) -®, , where @, is a node potential.

k=1



