

**Examination 2010** 

# "Electromagnetics and Numerical Calculation of Fields"

March 9, 2010

Name:

Student number: \_\_\_\_\_

### **Exercise 1:**

a.) Given is the potential 
$$\phi = \frac{1}{4\pi\epsilon_0} \frac{q}{\sqrt{x^2 + y^2 + z^2}}$$

Calculate the electric Field  $\vec{E}$ . (3 pt)

b.) Given is the electric flux density 
$$\vec{D} = \begin{pmatrix} 4(x-y) \\ 3(x+2y) \\ 2z \end{pmatrix}$$
.

Calculate the charge density  $\rho$ . (3 pt)

## **Exercise 2:**

- (a) What type of equation has to be solved for finding the electric potential  $\phi$  of an arbitrary charge distribution  $\rho(x, y, z)$ ? (2 pt)
- (b) What are Dirichlet boundary conditions and Neumann boundary conditions? (4 pt )

#### **Exercise 3:**

a.) Write down Gauss' law and Stokes' law and and show how to translate the Maxwell's equations from differential form to integral form. ( 6 pt )

b.) Use the Gauss' law to prove the

first:  

$$\int_{S} \phi(\nabla \psi) d\vec{a} = \int_{V} (\phi \Delta \psi) + (\nabla \phi) (\nabla \psi) dv$$
and second Green's identity:  

$$\int_{S} \psi \nabla \phi - \phi \nabla \psi d\vec{a} = \int_{V} \psi \Delta \phi - \phi \Delta \psi dv \quad . (6 \text{ pt })$$
Hint:  

$$\nabla(\phi \nabla \psi) = \phi \Delta \psi + (\nabla \phi) (\nabla \psi)$$

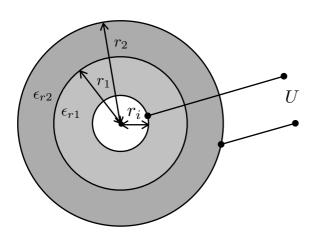
## **Exercise 4:**

Derive the wave equation for  $\vec{E}$  and  $\vec{H}$  directly from the Maxwell's equations for vacuum  $(\rho = 0, \ \vec{j} = 0)$ . (6 pt)

Hint: rot rot  $\vec{F} = \text{grad} \operatorname{div} \vec{F} - \Delta \vec{F}$ 

#### **Exercise 5:**

Find the capacitance of a spherical capacitor (inner radius  $r_i$ , the outer radii  $r_1$ ,  $r_2$  and the relative dielectric constants  $\epsilon_{r1}$ ,  $\epsilon_{r2}$ ). (8 pt)



#### **Exercise 6:**

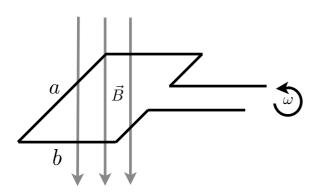
- a.) Write down the sinusoidal plane-wave solutions of the electromagnetic wave equation for  $\vec{E}$  and  $\vec{H}$  (two types of solutions). (4 pt )
- b.) How can you find  $E_0$  if  $H_0$  is given ? (2 pt)

#### **Exercise 7:**

- a.) What is the definition of the magnetic flux  $\phi_{mag}$  and how can it be found directly from the magnetic vector potential (use Stokes' law !) (4 pt )
- b.) Assume a thin wire of arbitrary shape is given together with the current I in the wire. How can you find the magnetic vector potential ? ( 4 pt )

#### **Exercise 8:**

A rectangular coil of length a and width b is turning with constant angular velocity  $\omega$  inside a homogenous field of magnetic induction  $\vec{B}$  (see figure). How large is the induced voltage? What is the time course of the voltage? (4 pt)



#### **Exercise 9:**

a.) Write down the central difference approximation used in the Finite Difference Method (FDM) for:

$$\frac{\partial \Phi}{\partial x}$$
 and  $\frac{\partial^2 \Phi}{\partial x^2}$ . (4 pt)

b.) Give a sketch of the computing molecule for the Laplace/Poisson equation (FDM).

Caption the axes.

Mark the values that are used to calculate the next value.

What does the computing molecule deliver ?

What do you do at the boundaries ? (8 pt)

# Exercise 10:

- a.) Describe the basic idea and equations of the Finite Element Method using Weighted Residuals with Poisson's Equation as an example.What is the Residuum? What was Galerkin's idea? (8 pt )
- b). Describe how a scalar function  $\phi$  can be approximated using linear node shape functions. Give a sketch of the linear shape functions in 1D case. (6 pt )

#### **Examination Result:**

| Ex 1 | Ex 2 | Ex 3 | Ex 4 | Ex 5 | Ex 6 | Ex 7 | Ex 8 | Ex 9 | Ex 10 | SUM |
|------|------|------|------|------|------|------|------|------|-------|-----|
| 6    | 6    | 12   | 6    | 8    | 6    | 8    | 4    | 12   | 14    | 82  |
|      |      |      |      |      |      |      |      |      |       |     |

# Solutions for Examination 2010 Electromagnetics and Numerical Calculations of Field

1a) 
$$\phi = \frac{1}{4\pi\epsilon_0} \frac{q}{\sqrt{x^2 + y + 2z^2}}$$

$$\vec{E} = -\nabla\phi$$

$$\begin{aligned} \frac{\partial \phi}{\partial x} &= -\frac{1}{4\pi\epsilon_0} \frac{2xq}{2(\sqrt{x^2 + y^2 + z^2})^3} \\ \frac{\partial \phi}{\partial y} &= -\frac{1}{4\pi\epsilon_0} \frac{2yq}{2(\sqrt{x^2 + y^2 + z^2})^3} \\ \frac{\partial \phi}{\partial z} &= -\frac{1}{4\pi\epsilon_0} \frac{2zq}{2(\sqrt{x^2 + y^2 + z^2})^3} \\ \vec{E} &= \frac{1}{4\pi\epsilon_0} \frac{q}{(\sqrt{x^2 + y^2 + z^2})^3} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{aligned}$$

1b)

$$\nabla \vec{D} = \partial_x D_x + \partial_y D_y + \partial_z D_z = 4 + 6 + 2 = 12$$

2a) Poisson equation: 
$$\Delta \phi = -\frac{\rho}{\epsilon_0}$$
  
or Coulomb Integral  $\Phi(\vec{r}) = \frac{1}{4\pi\epsilon} \iiint \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} dv'$ 

2b) Neumann: 
$$\frac{\partial \phi}{\partial n}|_{boundary} = \hat{\phi}_n$$

On the boundaries the normal derivative of the potential is given.

Dirichlet:

 $\phi|_{boundary} = \hat{\phi}$ 

On the boundaries the potential is given.

Gauss: 
$$\int_{V} div \vec{A} dv = \int_{S} \vec{A} d\vec{a}$$
  
Stokes:  $\int_{S} rot \vec{A} d\vec{a} = \int_{s} \vec{A} d\vec{s}$ 

Maxwell:

$$div\vec{D} = \rho \rightarrow \int div\vec{D}dv = \int \vec{D}d\vec{a} = \int \rho dv$$
$$div\vec{B} = 0 \rightarrow \int div\vec{B}dv = \int \vec{B}d\vec{a} = 0$$
$$rot\vec{E} = -\frac{\partial}{\partial t}\vec{B} \rightarrow \int rot\vec{E}d\vec{a} = \int \vec{E}d\vec{s} = -\frac{\partial}{\partial t}\int \vec{B}d\vec{a}$$
$$rot\vec{H} = \vec{J} + \frac{\partial}{\partial t}\vec{D} \rightarrow \int rot\vec{H}d\vec{a} = \int \vec{H}d\vec{s} = \int (\vec{J} + \frac{\partial}{\partial t}\vec{D})d\vec{a}$$

3b)

First Green's Identity

$$\int_{V} (\phi \Delta \psi + (\nabla \phi)(\nabla \psi) dv = \int_{V} \nabla (\phi \nabla \psi) dv = \int_{S} \phi \nabla \psi d\vec{a}$$

Second Green's Identitiy

$$\begin{split} \int_{S} \psi \nabla \phi - \phi \nabla \psi d\vec{a} &= \int_{V} \nabla (\psi \nabla \phi - \phi \nabla \psi) dv \\ &= \int_{V} \psi \Delta \phi + (\nabla \psi) (\nabla \phi) - \phi \Delta \psi - (\nabla \phi) (\nabla \psi) dv \\ &= \int_{V} \psi \Delta \phi - \phi \Delta \psi dv \end{split}$$

3a)

$$rot\vec{E} = -\mu\frac{\partial}{\partial t}\vec{H}$$

$$rot\vec{R} = \varepsilon \frac{\partial}{\partial t}\vec{E}$$

$$rot rot\vec{E} = -\mu rot\frac{\partial}{\partial t}\vec{H}$$

$$rot rot\vec{H} = \varepsilon rot\frac{\partial}{\partial t}\vec{E}$$

$$grad \ div\vec{E} - \Delta\vec{E} = -\mu\frac{\partial}{\partial t}rot\vec{H}$$

$$grad \ div\vec{H} - \Delta\vec{H} = \varepsilon\frac{\partial}{\partial t}rot\vec{E}$$

$$since \ div\vec{E} = 0$$

$$since \ div\vec{H} = 0$$

$$\Rightarrow \ \Delta\vec{E} - \mu\varepsilon\frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0$$

$$\Rightarrow \ \Delta\vec{H} - \varepsilon\mu\frac{\partial^{2}\vec{H}}{\partial t^{2}} = 0$$

5)

The spherical capacitor can be treated as two partial spherical capacitors in series.

$$\begin{aligned} \frac{1}{C_{total}} &= \frac{1}{C_1} + \frac{1}{C_2} \\ U_1 &= \int_{r_i}^{r_1} E dr = \int_{r_i}^{r_1} \frac{Q}{4\pi\epsilon_{r1}\epsilon_0} \frac{1}{r^2} dr = \frac{Q}{4\pi\epsilon_{r1}\epsilon_0} \left(\frac{1}{r_i} - \frac{1}{r_1}\right) \\ C_1 &= \frac{4\pi\epsilon_{r1}\epsilon_0}{\frac{1}{r_i} - \frac{1}{r_1}} \\ U_2 &= \int_{r_1}^{r_2} E dr = \int_{r_1}^{r_2} \frac{Q}{4\pi\epsilon_{r2}\epsilon_0} \frac{1}{r^2} dr = \frac{Q}{4\pi\epsilon_{r2}\epsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ C_2 &= \frac{4\pi\epsilon_{r2}\epsilon_0}{\frac{1}{r_1} - \frac{1}{r_2}} \\ C_{total} &= \frac{4\pi\epsilon_0\epsilon_{r1}\epsilon_{r2}}{\epsilon_{r2}(\frac{1}{r_i} - \frac{1}{r_1}) + \epsilon_{r1}(\frac{1}{r_1} - \frac{1}{r_2})} \end{aligned}$$

$$E_y = E_0 e^{j(wt-kx)}$$
$$H_z = H_0 e^{j(wt-kx)}$$

or

$$E_y = E_0 e^{j(wt+kx)}$$
$$H_z = -H_0 e^{j(wt+kx)}$$

 $\mathbf{6b} \qquad E_0 = \Gamma H_0 = \sqrt{\frac{\mu}{\epsilon}} H_0$ 

7a)

Magnetic Flux:

$$\phi_m = \int_S \vec{B} d\vec{a}$$
$$\vec{B} = rot \vec{A}$$
$$\Rightarrow \phi_m = \int_S rot \vec{A} d\vec{a} = \int_S \vec{A} d\vec{s}$$

7b)

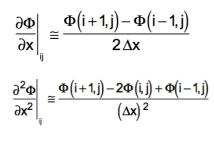
Bio-Savart-Law:

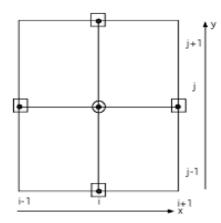
$$\vec{A}(r) = \frac{\mu I}{4\pi} \int_{S} \frac{1}{r - r'} dv'$$

8)

$$U_{ind} = -\frac{d}{dt} \int_{S} \vec{B} d\vec{a} = -\frac{d}{dt} (Babcos(\omega)) = Bab\omega sin(\omega t)$$

6)





The computing molecule delivers one linear equation for each node => A linear equation system Ax = g has to be solved for the whole system. Matrix A has size n\*n for n nodes;

At the boundary, Dirichlet, Neumann or Mixed boundary conditions have to be taken into account

9a)

10a)

Poisson's equation:  $\Delta \Phi = -\frac{\rho}{\varepsilon}$ Ideal solution:  $\Delta \Phi + \frac{\rho}{\varepsilon} = 0$ Approximated solution:  $\Delta \tilde{\Phi} + \frac{\rho}{\varepsilon} = R$  *R* is the Residuum. Best approximation:  $\int w \cdot R dv = \int \left(\Delta \tilde{\Phi} + \frac{\rho}{\varepsilon}\right) \cdot w dv = 0$ where *w* is weighting function. Using Green's 2<sup>nd</sup> law:  $\int (grad\tilde{\Phi}) \cdot (gradw) dv - \oint w \frac{\partial \tilde{\Phi}}{\partial u} da - \int \frac{\rho}{\varepsilon} w dv = 0$ 

In the Galerkin's method, the weighting functions are chosen to be the basis functions (node shape functions):  $w_l(x,y,z) = \alpha_l(x,y,z)$ .

10b)

