(3 Points)

Spring 2015

An observer at rest see a ruler moving with the velocity *v*. The length of the ruler in the direction of the motion is at rest ℓ_0 .

- a) How long is the ruler as measured by the observer?
- b) What has to be considered when the measurement is carried out?
- c) What is the velocity of the ruler when the observed relativistic effect is 0.5 %?
- d) Show that the result of the measurement is compatible with the Lorentz transformation.

Problem 2

(5 Points)

(4 Points)

The lifetime of radioactive particles at rest is $\tau = 5 \cdot 10^{-7}$ s. The particles move with the velocity $v = 0.95 \cdot c$ relative to an observer at rest.

- a) How long is the time necessary to pass the distance of one kilometer as measured by the observer?
- b) How long is the time as measured with a clock moving with the particles?
- c) How many particles arrive at the end of the kilometer when there are 10¹⁰ particles at the beginning?
- d) How many particles would be expected without relativistic effects?
- e) Calculate the lifetime of the moving particles.

Problem 3

- a) Albert Einstein explained Planck's law by three fundamental processes. Explain these processes.
- b) Make a sketch of Planck's law, i.e. plot the spectral radiance as a function of the wavelength λ .
- c) Write up and explain Stefan-Boltzmann's law.
- d) What is a black body?
- e) A sphere (radius 10 cm) approximating a black body is exposed to the sun (150W/m²) and absorbs the whole arriving power of the sun. Calculate the temperature of the sphere in thermal equilibrium when the temperature of the surrounding is 300 K.

Problem 4

(4 Points)

A hydrogen atom ($m_{\rm H} = 1 \text{ g/mol}$) moves in the one-dimensional harmonic oscillator potential $\Phi(x) = Dx^2/2$.

- a) Give the time-independent Schrödinger equation for the motion in this potential.
- b) Give the formula for the energy of the ground state.
- c) The oscillation of the hydrogen atom can be excited by light of the wavelength $\lambda = 4.7 \cdot 10^{-6}$ m. Calculate the energy of the ground state.
- d) Determine the value of the constant *D*.

Problem 5

(4 Points)

For the description of atomic wave functions the spherical coordinates *r*, θ and φ are used.

- a) Which quantum numbers determine the radial and angular part of the wave function, R(r) and $Y(\theta, \varphi)$, respectively.
- b) Give the allowed range for each of these quantum numbers.

- c) Give the quantum numbers of the *d*-orbital.
- d) Sketch the radial wave function of the *d*-orbital with the smallest energy. Give reasons for the plot.
- e) How varies in this case R(r) as a function of r in the limit of small and large values of r, respectively?

Problem 6

- a) Give the equations which determine the spin of the electron.
- b) Explain Pauli's principle and its consequences for the wave function of electrons.
- c) What is the exchange interaction and why is it important for the properties of atoms?
- d) Give the Coulomb and the exchange energy of two electrons occupying the quantum states $|a\rangle$ and $|b\rangle$.

Problem 7

For Pr^{3+} there are two electrons in the 4f shell.

- a) Give the quantum numbers of these electrons.
- b) Give the quantum numbers of the angular momenta and the spectroscopic notation of the ground state of Pr^{3+} .
- c) Explain Landé's rule and sketch the spin-orbit splitting of the ground multiplet of Pr³⁺ according to Landé's rule.
- d) Sketch the spin-orbit splitting of the ground multiplet according to Landé's rule for Tm³⁺ (hint: 4f¹² configuration).

Problem 8

(4 Points) The free electron gas trapped in a three dimensional box potential with infinitely high walls can be used as an approximation to describe the physical properties of a metal.

- a) Give the time-independent Schrödinger equation for an electron trapped in a cubic box potential (length of the edge L = 1 mm).
- b) Give the wave function of an electron enclosed in this potential.
- c) Give the quantum numbers characterizing the state of the electron.
- d) Calculate the energy for the quantum states of the electron.
- e) How large is the highest energy of an electron in the ground state when there are 10¹⁰ electrons in the box.

Required physical constants:

Velocity of light:	$c = 3 \cdot 10^8 { m m/s}$
Stefan-Boltzmann's constant:	$\sigma = 5.67 \cdot 10^{-8} \mathrm{Wm^{-2}K^{-4}}$
Avogadro's number:	$N_{ m A} = 6 \cdot 10^{23} { m mol}^{-1}$
Plancks's constant:	$h=4, 14\cdot 10^{-15}{ m eVs}$
electron mass:	$m_{ m e}=500{ m keV}/c^2$
	-

(4 Points)

(4 Points)