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Problem 1. Fraunhofer diffraction

Consider two apertures, a circular aperture A1 and an elliptical aperture A2 that are located at the origin of
x-y plane. As illustrated in Fig. 1, the circular aperture A1 has a radius of r, but the elliptical aperture A2 is
stretched in y-axis by a factor µ, compared to A1. Suppose that the apertures shall be illuminated with a plane
wave at normal incidence.

Figure 1: Two apertures A1 and A2, where aperture A2 is stretched in one direction.

(a) Show that in a distance d where the far-field approximation holds, the Fourier spectrum of the field diffracted
by the aperture A2 can be written as
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denotes the Fourier spectrum of the field diffracted by the aperture A2. (2

points)

(b) Given the diffraction patterns in the far-field for a circular and square apertures as shown in Fig. 2, sketch
the diffraction patterns by an elliptical and rectangular apertures that are stretched in one direction but
keep the same geometric width in the other direction. Also discuss why you think so. (2 points)

Figure 2: Diffraction patterns.
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Problem 2. Principal axis of anisotropic crystals

Consider an anisotropic crystal characterized in the laboratory coordinate system by the following relative
permittivity tensor

ε̂ =

 a 0 0
0 1.25a αa
0 αa 1.75a

 ,

where a is some non-zero number that eventually defines the material properties.

(a) Find all possible solutions for α such that the crystal is uniaxial. (2 points)

(b) For α’s obtained from the previous question, rewrite the crystal permittivity tensor in the respective principal
axes. (1 point)

(c) For the real positive solution of α from the previous question, write the principal axes of the crystal in
terms of the laboratory coordinate basis. (2 points)

(d) How much does the crystal need to be rotated with respect to laboratory coordinate such that we have a
diagonalized permittivity tensor in the new coordinate system? (1 point)

Problem 3. Anisotropic material

Let us consider the interface between an isotropic medium [characterized by εi(ω)] and a uniaxial crystal
[εor(ω), εe(ω)] and light impinging at an angle φi to the surface normal with a wavevector ki in the y-z plane.
The optic axis (z-axis) and the surface normal forms the angle α (see Fig. 3). We know from the theory of
anisotropic media that there will be two refracted waves into the uniaxial material, namely the extraordinary
wave and the ordinary wave, if the polarization of the electric field of the incident wave is not parallel to any
of the principal axes of the anisotropic medium.
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Figure 3: Intersection of the k surfaces with the plane of incidence

(a) The expression of the refractive index for the extraordinary wave nb(ω, θ) is given by

nb(ω, θ) =
ne(ω)nor(ω)√

n2or(ω) sin
2(θ) + n2e(ω) cos

2(θ)
,

where θ is the angle between the direction of the wavevector in a medium and the optic axis (z-axis),
nor(ω) =

√
εor(ω), and ne(ω) =

√
εe(ω). Explain what represents the value of nb(ω, θ) in the geometrical

construction in Fig. 3. (Hint: You may explain it in a text or draw it if you like.) (2 points)
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(b) Write the expression of Snell’s law for both the ordinary and extraordinary rays. Furthermore, explain what
Snell’s law means in the geometrical construction in Fig. 3. (Hint: You may explain it in a text or draw it
if you like.) (2 points)

(c) Find all the possible values for φi and α, from the coordinate above, for which the energy flow for ordinary
and extraordinary waves is along the same direction. (2 points)

(d) Assume that the above anisotropic material (ε1 = ε2 = εor, ε3 = εe) with thickness d is cut and oriented
such that the surface normal is oriented in the direction of ey = {0, 1, 0}, (i.e., α = π/2) and one crystal
axis is oriented along ec = {sin(β), 0, cos(β)} (i.e., the rotated z-axis by an angle of −β around y-axis).
Consider an x-polarized plane wave, with a vacuum wavevector k = 2π

λ0
{0, 1, 0} that hits this slab at normal

incidence (i.e., φi = 0), propagates through it and leaves the slab. We assume lossless propagation, and
further assume the Fresnel reflection at both interfaces to be negligible. Decompose the incident electric
field E = E0exe

i(ky−ωt) in the crystal basis given above and show that it reads as

E(y) = E0 [cos(β)(ey × ec) + sin(β)ec] e
i(ky−ωt).

(2 points)

(e) When β = π/4, show that the output electric field E(y) at y = d when it comes out of the crystal can be
written in the laboratory axis as

E (y = d) = E0
1
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(2 points)
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