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A. Formulation 

For a synchrotron radiation facility to get high spectral 

brilliance it is desirable to have a small emittance of the electron 

beam in the storage ring. It is well known that the horizontal emittance 

(the predominant emittance) of an electron beam in a storage ring is 

given by 

where 

and 

:y_ IE 
me 

J o; == rms beam width 

..J; =horizontal partition factor / + J 7; 

= /<'r,/+.!1fx1J1'J"+f 
dl/Jdle r of/ g -=: Courant-Snyder parameters 

l '? 7j 1 = dispersion functions 
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(Hopefully the double useage of e and y will not cause any confusion.) 
3 

It is not difficult to see that a for each dipole with 

length fl or 

where e = Jl/p is the bending angle of each dipole assumed identical, and 

F is a numerical factor controlled by the lattice design. 

For given energy (y) ex is reduced by reducing e or F. Reducing 

a is very effective but requires using a large number of short dipoles. 

This has two undesirable side effects. First, the cost is higher for 

larger number of shorter magnets. Second, such an arrangement tends to 

take up more circumferential space and together with the long straight 

sections desired for the special insertions, will lead to a larger ring 

which will further increase the cost. Thus, the decision on e is largely 

a social/political/economical one, and will not be further discussed here. 

Scientifically, however, one can ask the question that once a is chosen 

what type of lattice will give the lowest F. This question we will now 

address. 

B. FOOO Lattice 
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The FODO lattice is far from optimal, but is used here to illustrate 

the computational procedure and to provide a point for comparison. As shown 

in the diagram we shall use the thin-lens approximate values for the orbit 

and the dispersion functions at the quadrupoles. 
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· dlpcle s 

As a good approximation we shall neglect the very weak centrifugal 

focusing in the dipole. The functions in the first half of the dipole 

are then 

/3 ==Ir -P?ot,: s + rF 
ol = 
p :=: "= 

This gives 

pt == ,? 7:t + tf?o(? 1 '+I' ? JK 
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= ('f/F + 7;s f+ o? (olF-')/..s)r;; + + 
(}-- R I . ..t 

':: Vp ?F -r 11 °'F 7r .,.. IF ?1: = 

For a FODO cell with phase advance µwe have 
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l'i = -?x ..L 
r Jo+.x)o-x) 

and 

where x = sin(µ/2). This gives 

or 

For the second half of the dipole a similar procedure starting with 

variables with subscript D gives 

];::" - -1 /it'" (--1. - _L)fl 1 -i - ,X 1-X :X R 7 

Averaging between these two halves we get finally 
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For convnonly used values of the phase advance µ we have 

µ = 90° 

µ = 72° 

µ = 60° 

F = 2.50 

F = 4.51 

F = 7.51 

We shall see below that even for L/t = 1 these values of F are rather 

large. This is expected because the FODO lattice is not optimized at 

all for this purpose. 

C. Minimizing F 
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Again, we neglect the centrifugal focusing in a dipole and 

approximate both a and n as quadratic functions of s. It is clear that 

F is minimum when n = 0 and a = a0 = minimum at the midpoint (s = 0) of 

the dipole. In this case 

and 

s ot=--fio 

'Y(=f 

The expression in the parenthesis is a minimum when ai = $o . This gives 
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"Absolute minimum 
but useless" 

This case is, however, rather unrealistic. Such a dispersion function 
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will not produce a lattice which is appropriate for accommodating insertions. 

For this we want n = n' = 0 at one end of the dipole so as to produce a 

dispersion-free long straight section. We assume a totally general a-function 

which has a minimum of s0 at s = s0 t 0. In this case 

The expression in the round parentheses has the minimum value of at 
s 
-f- = i and the whole expression is a minimum when 

This gives 
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"useful but 
difficult" 

s 
Even, for this case, the optimal condition of · to = ii is not too easy to 

obtain. 

To make it even more realistic let us consider the syrmnetric 

achromatic bend connecting two dispersion-free straight sections shown 

below. ( 

l=o 0 

The focusing quadrupole in the middle has strength K and we have assumed 

an edge focusing k at the end of the dipole. The dispersion function to 

the left of K is given by 

,ea (t .l_J ,,eR) ?? - -'-- - + ";e_-., - ,:( f f c< f ) 

The transfer matrix from s0 to Hl is 

s 
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Hence the orbit functions to the left of K are 

/i = +fa-t-{l+'fi;){.l-sJ}l; 

- IX'= P,+Ut-,i,J{.t-s.jj; 

The matching conditions at K are 

and 

or, by eliminating:lt, an' = -a.n. This gives 

f (1+t4L) 

= f +ft+ kf.1-s.)][1, { f.+1, + f 

or 

s 
For reasonable values of k this requires > or 

"useful and 
realistic" 
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It is important to note that this realistic case gives an which is 

only about 1.6 times larger than the unrealistic minimum value All 

these F values are about two orders of magnitude smaller than those of the 

corresponding FODO cells. 

D. The SRRC Lattice 

For the TLS we have 

y = 1958 {1 GeV) 

cq = 3.832x10-13 m 

s0 = 0.78 m 

This gives 

and 

Jx = 1.045 
e = .!. 6 
S0 = 0.32 m R. = 1.45 m 

The point is that the F value of 0.1278 is larger than the theoretical 

minimum Fjin ::; 0.1054 by only about 20%. It is, therefore safe to state 

that unless one increases the number of dipoles as was done for the LBL-ALS 

the design emittance of TLS is very nearly the best possible. 

To surrmarize, the present TLS design gives an emittance which is 

4 x "Theoretical minimum but useless". 

2 x "Useful minimum but difficult". 

1.2 x "Useful and realistic minimum". 
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The approximation used in TM-1269 of taking both the horizontal a 
and n in a dipole as quadratic functions of s is good for bending angles 

much smaller than unity. For the TLS the bending angle of is too large 

for this to be a quantitatively good approximation, although all qualitative 

conclus:ions remain va 1 id. We derive here the exact fonnulas which apply to 

large bending angJes. 

Again we take s=o to be the end of ·the dipole where n=n'=o.and s=s to be . • 0 
1 the location where S has the minimum value 60 . and where a 0 = O and y 0 = S. 
0 

The transfer matrix from s0 to s is then 

pSin S-So 

and the exact betatron functions are 

; -111 e1s
2 + s;.,,.a ;,so 

rX =- / - L) 5, 'n .r-.So C!o.s s-s,, l f 130 .f ;-; . 

J == A S;n.a s-So +_j_ s-s .. r f / 0 f . 

( 1 ) 

(2) 
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The exact dispersion functions are 

'Yf ,,, p (I - C!a-s -; ) 

t= S',r,t . 

Substituting these we get 
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(3) 
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where 

To minimize l < H > or the emittance p 

we must have 

14) - fA::e lf Jt/n/ne - y'-:;r+B 
which gives 

or 

with 

Thus with given i and pone must adjust s0 to minimize A2-s2• For this we 

need 
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(7) 

(8) 

(9) 



-4-

It is easy to show that B=o does not lead to physically reasonable solutions, 

and dd: = o gives 
0 

s 
For small !:. and _Q this gives 

p p 

or 

agreeing with the approximate result given in 

p = 2.769 mas in the TLS Eqs. (12), (8) and (10) give 

Jl 1T d For - = - an 
p 6 

( assuming ·J; 1) . 

( 11) 

(12) 

(13) 

( 14) 

( 15) 
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These values of s0 and s0 will, however, lead to unrealistically high 

values of S on either side of the dipole. In the TLS design we compromised 

by going to higher values of s0 and s0 , and settled for an emittance about 

twice Emin· 
Frequently one has to calculate s0 and s0 from the values s1 (at s=o) 

and s2 (at s=i). For this we have 

A., = A :t. ,!.-so + _!_ !-so If f f ltJ •n J 

or, after solving for s0 and s0 

where 

For the TLS design values we have 

A -= :J. Ice o m /...,., ) 

This gives through Eqs. (17) 

(16) 

( 18) 

( 19) 
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and through Eqs. (5), (6), and (7) 

f (.Jt) == P.tPJ7/f and (20) 

This emittance agrees with that given by the computer program. 


