

Institute for Beam Physics and Technology (IBPT) Bastian Härer, Axel Bernhard, Bennet Krasch, Nathan Ray, Anke-Susanne Müller

Accelerator Physics WS24/25Exercise sheet 2 (Submission: 19.11.2024)

Exercise 1: Symplectic Matrices

(4 points)

(1)

(7 points)

In the lecture we've learned about symplectic matrices and why accelerator transport matrices are symplectic. Remember a real (2×2) matrix **A** is semplectic if

 $\mathbf{A}^T \mathbf{S} \mathbf{A} = \mathbf{S},$

with

$\mathbf{S} =$	(Ø	\mathbb{I}
	$\left(-\mathbb{I}\right)$	ø)

	(1)
	(1)

(c) Show that if **A** and **B** are symplectic, **AB** is too.

(a) Show that the identity matrix **I** is symplectic.

(b) Show that if **A** is symplectic, \mathbf{A}^{-1} is too.

(d) Explain briefly in your own words why the transport matrices need to be symplectic and why the results in a) to c) matter. (1)

Exercise 2: Beam Optics

(a)	Explain the interpretation of the optical functions $\alpha(s)$, $\beta(s)$, $\gamma(s)$ and the emittance ϵ .	(1)
(b)	Give the transfer matrix M of a FODO lattice. Hint: You have to multiply several matrices. Start and end with "half" a focusing quadrupole and use thin lens approximations for the magnets.	(3)
(c)	Why does the FODO lattice M exert an overall focusing effect on the beam? Use the stability criterion $(\text{Tr}\{\mathbf{M}\} \leq 2)$ in your explanation.	(2)
(d)	Determine the focal length f of a quadrupole in LEP. (100 GeV/c, magnetic field gradient of $11 \mathrm{T m^{-1}}$, length $2 \mathrm{m}$)	(0.5)

(e) Comment if the thin lens approximation for the quadrupole in d) is suitable if the quadruple is 2 m long. (0.5)