

Institute for Beam Physics and Technology (IBPT) Bastian Härer, Axel Bernhard, Bennet

Krasch, Nathan Ray, Anke-Susanne Müller

Accelerator Physics WS24/25

Exercise sheet 3 (Submission: 26.11.2024)

Exercise 1: KARA Synchrotron

(5 points)

The synchrotron radiation source KARA (**Ka**rlsruhe **R**esearch **A**ccelerator) has a local bending radius of $\rho_{\text{KARA}} = 5.559 \text{ m}$ and a circumference of $U_{\text{KARA}} = 110.4 \text{ m}$. Typically, beam energies of 1.35 GeV or 2.5 GeV are used.

(a) Calculate the total energy loss per revolution $W_{\rm s}$ for an electron at both energy levels.	(1)
(b) What is the orbital frequency f of the electrons?	(0.5)

- (c) Specify the total emitted power for a beam current of I = 200 mA in each case. (1)
- (d) Calculate the characteristic frequencies of the synchrotron radiation spectra $\omega_{\rm c}$. Determine the photon energies corresponding to these frequencies. What do these result mean for the storage ring? (1)
- (e) Compare the total energy loss per revolution for an electron in LEP with that of a proton in LHC and an electron as well as a proton in FCC. LEP: $\rho = 3.2$ km, circumference = 26.7 km, beam energy = 100 GeV, LHC: $\rho = 2.8$ km, circumference = 26.7 km, beam energy = 7 TeV FCC: $\rho = 10.5$ km, circumference = 100 km, beam energy = 100 TeV (1.5)

Exercise 2: Synchrotron radiation

(4 points)

To compensate for the energy loss due to synchrotron radiation, how much power must be supplied to the accelerators listed below?

- (a) ESRF: Electron beam with a beam energy of 6 GeV, beam current of 200 mA. The deflection magnets generate a field of 0.85 T at the beam. (2)
- (b) LHC: Two proton beams of 7 TeV each. The bending radius of the dipole magnets is 2803.95 m, the circumference is $26\,658.883 \text{ m}$, and 2808 bunches containing 1.1×10^{11} protons are stored per beam. Is the literature value for the 'classical electron radius' applicable? (2)