

Introduction to Laser-Wakefield Acceleration

Matthias Fuchs

Outline

- Electron interacting with a strong electromagnetic field
- Introduction to plasma physics
- Plasma waves
- Laser-plasma acceleration

Laser-Wakefield Acceleration

Invented by Tajima & Dawson, 1979

Volume 43, Number 4

PHYSICAL REVIEW LETTERS

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

Short-pulse high-power lasers no where near existence

sused computer simulations that today a cell phone could do in a fraction of the time

Electron in strong electromagnetic field I

Plane wave, linearly polarized along y direction

$$\vec{E}_l(x,t) = \hat{y}E_0\cos(k_lx - \omega_l t)$$

$$\vec{B}_l(x,t) = \hat{z}B_0\cos(k_lx - \omega_l t)$$

$$k_l = \frac{2\pi}{\lambda_l}$$
 : wavenumber

 ω_l : angular frequency

Electron in strong electromagnetic field II

∅ e in plane e-m wave (non-relativistic)

Lorentz force

$$\frac{d}{dt}(m\vec{v}_e) = -e(\vec{E}_l + \vec{v}_e \times \vec{B}_l)$$

 $\frac{d\vec{p}_e}{dt} = \vec{F}_L$

C

 $\overrightarrow{E}_{l}(x,t) = \hat{y}E_{0}\cos(k_{l}x - \omega_{l}t)$

 $\overrightarrow{B_l}(x,t) = \hat{z}B_0\cos(k_l x - \omega_l t)$

$$B_0 = \frac{L_0}{c}$$
 -> for v_e <

$$\vec{v}_e(t) = \hat{y} \frac{eE_0}{m\omega_l} \sin(k_l x - \omega_l t)$$
$$y(t) = \frac{eE_0}{2} \cos(k_l x - \omega_l t)$$

ma

Electron in strong electromagnetic field III

 $\vec{v}_e(t) = \hat{y} \frac{eE_0}{m\omega_l} \sin(k_l x - \omega_l t)$ Maximum velocity $v_{max} = \frac{eE_0}{m\omega_1}$ - relativistic for Vmax -> C: Vmax 3 1 : cEs 31 c J : cEs 31 : do : normalized laser field a. E E. -> relativistic interaction 21 -> also need to consider Vx B krm

Interpretation of a₀

wickie ZF Work done by E. over le E. over le other way to look at it: ab E C E b Wime 27 mc2 é rest mass enougy (Einstein) -> for a, >1: é gains energy = me? over a distance N

Example: normalized laser field 100 TW

engineering formula: $a_0 = \lambda I_{\mu}mJ \cdot \frac{1}{7.4 \cdot 10^{18}}$

 $\frac{100 \text{ TW laser @hit: } P = \frac{2.5 \text{ J}}{25 \text{ fs}} = 100 \cdot 10^{12} \text{ W}}{10^{-15}}$

· focused to 20 µm spot: $\overline{I} = \frac{P}{A^2} = \frac{100 \cdot 10^{12} W}{(20 \cdot 10^{-4})^2 cm^2} = \frac{100}{400} \cdot \frac{10^{12} \cdot 10^8}{10^{20}} = 2.5 \cdot 10^{-9} \frac{W}{m^2}$ X=1mm: $a_0 \approx 1. \frac{2.5 \cdot 10^{19}}{1.4 \cdot 10^{18}} \approx 120 \approx 4.5$ 22 - 10

Outline

- Electron interacting with a strong electromagnetic field
- Introduction to plasma physics
 - Plasma frequency
 - Light propagation in plasmas
- Plasma waves
- Laser-plasma acceleration

Plasma

- "fourth state of matter"
 consists of separated positive and negative charges (e.g. ionized gas)
 electrically neutral
- by separating electrons from the ions, enormous electric fields can be generated
- Unlike electrons, ions are static on the timescales of the interaction (ion movement on ~0.1 ns – scale) due to higher mass

Plasma properties: Plasma oscillations

- displacement of electrons
- creates regions of positive and negative charges
- sets up restoring electrical field
- electrons are accelerated back, overshoot
- harmonic oscillation with "plasma frequency":

$$\omega_{p,e} = \sqrt{\frac{e^2 n_e}{m_e \epsilon_0}}$$

Laser propagation in plasmas I

relevant Maxwell-eqns:

k x ('

plane waves: $\vec{E} =$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

$$\vec{E} = \vec{E_0} e^{i(\vec{k}\vec{r} - \omega t)}$$

$$- > \quad \vec{\nabla} \times \vec{E} = i\vec{k} \times \vec{E}:$$

1 **

$$i\vec{k} \times \vec{E} = i\omega\vec{B} \qquad (*)$$
$$i\vec{k} \times \vec{B} = \mu_0\vec{j} + i\frac{\omega}{c^2}\vec{E} \qquad (**)$$

& use
$$A \times (B \times C) = (A \cdot C)B - (A \cdot B)C$$

$$k^{2}\vec{E} - \vec{k} \cdot (\vec{k} \cdot \vec{E}) = \frac{\omega^{2}}{c^{2}} \left(i\frac{\vec{j}}{\epsilon_{0}\omega} + \vec{E} \right)$$

> find expression for current density j

Laser propagation in plasmas III

-> dispersion relation for an e-m in plasma:

$$\omega^2 = \omega_p^2 + c^2 k^2$$

-> phase velocity of wave:

$$v_{\phi} = \frac{\omega}{|\vec{k}|}$$

-> refractive index of plasma:

$$\eta = \frac{c}{v_{\phi}} = \sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}$$

-> group velocity of wave:

$$v_{\text{group}}^{\text{laser}} = \frac{d\omega_L}{dk_L} = c\sqrt{1-\omega_p^2/\omega_L^2}$$

Dispersion relation I

 $\omega^2 = \omega_p^2 + c^2 k^2$

-> dispersion relation:

w/wp

plasma

for $\omega \gg \omega_p$:

disp. rel. of plasma approaches that of vacuum -> response of electrons (ω_p) too slow to respond to high frequencies

-> light field doesn't "feel" (couple to) electrons

for $\omega < \omega_p$: wave can't propagate in

-> gets reflected or damped

-> plasma electrons shield fields that oscillate at a frequency < ω_{p}

Dispersion relation II

/ 0

0

$$\left(\omega^2 = \omega_p^2 + c^2 k^2\right)$$
 -

$$k = \frac{\sqrt{\omega^2 - \omega_p^2}}{c}$$

<u>for $\omega < \omega_p$: -> k is imaginary</u>

=> wave decays as:

$$\exp\left(-x\sqrt{\frac{\omega_p^2-\omega^2}{c}}\right)$$

distance over which wave amplitude is decreased by factor 1/e

critical plasma density: ($\omega = \omega_p$)

with skin depth: $\delta = |k|^{-1} = \frac{c}{(\omega_n^2 - \omega^2)^{1/2}}$

remember:

critical plasma density:

$$\omega_{p,e} = \sqrt{\frac{e^2 n_e}{m_e \epsilon_0}}$$

$$n_c = \frac{m_e \epsilon_0 \omega^2}{e^2}$$

overcritical plasma

Eqns of motion for an electron in vacuum interacting with a strong e-m plane field

 $\frac{d}{dt}\frac{\partial L}{\partial v} - \frac{\partial L}{\partial r} = 0$ **Relativistic Electron Lagrangian** $L(v, x - ct) = -mc^2 \sqrt{1 - v^2/c^2} - (e/c) v \cdot A(x - ct)$ $\partial L/\partial v = \underbrace{m\gamma v}_{\mathcal{D}} - (e/c)A_{\perp}$ _____

symmetry: $\partial L / \partial r_{\perp} = 0$, invariant: $\partial L / \partial v_{\perp} = p_{\perp} - (e/c)A_{\perp} = \text{const}$

symmetry: L(x - ct), $dH/dt = -\partial L/\partial t = c \ \partial L/\partial x = c \ dp_x/dt$ invariant: $E - p_r c = const$

For electron initially at rest:

$$E_{kin} = mc^{2}(\gamma - 1) = p_{x}c = p_{\perp}^{2}/2m = mc^{2}a^{2}/2$$

(relativistically exact !)

Relativistic equations of motion

$$\mathbf{a} = \frac{e\mathbf{A}_{\perp}}{mc^2},$$

$$\hat{\mathbf{p}}_{\perp} = \frac{\mathbf{p}_{\perp}}{mc} = \mathbf{a} = (0, a_y, a_z),$$

$$\hat{E}_{kin} = \frac{E_{kin}}{mc^2} = \gamma - 1 = \hat{p}_x = \frac{\hat{p}_{\perp}^2}{2} = \frac{a^2}{2},$$

normalized vector potential:

$$a_0 = \frac{eA_0}{mc^2} = \sqrt{\frac{I_0 [W/cm^2]\lambda_0^2 [\mu m^2]}{1.37 \cdot 10^{18}}}$$

 $a_0 > 1$: relativistic intensities -> laser intensity \approx electron rest mass $a_0 = 1 \Rightarrow 10^{18} \text{ W/cm}^2$

light propagates in x, transv. polarized:

 $\gamma = 1 + \frac{a^2}{2} \qquad \text{for } a \gg 1$ $\hat{p}_y = \gamma \beta_y = \frac{\gamma}{c} \frac{dy}{dt} = a_y(\tau) \qquad \beta_y = \frac{a_y}{1 + a^2/2} \to 0$ $\hat{p}_z = \gamma \beta_z = \frac{\gamma}{c} \frac{dz}{dt} = a_z(\tau) \qquad \beta_z = \frac{a_z}{1 + a^2/2} \to 0$ $\hat{p}_x = \gamma \beta_x = \frac{\gamma}{c} \frac{dx}{dt} = a^2(\tau)/2 \qquad \beta_x = \frac{a^2/2}{1 + a^2/2} \to 1$

e trajectories

for lin polarization in y: $a_y = a_0 \cos(\omega \tau)$

e trajectories

$$\begin{aligned} x(\tau) &= \frac{ca_0^2}{2} \int_0^\tau \cos^2(\omega \tilde{\tau}) d\tilde{\tau} = \frac{ca_0^2}{4} \left[\tau + \frac{1}{2\omega} \sin(2\omega \tau) \right], \\ y(\tau) &= ca_0 \int_0^\tau \cos(\omega \tilde{\tau}) d\tilde{\tau} = \frac{ca_0}{\omega} \sin(\omega \tau), \end{aligned}$$

$$\tau = t/\gamma \qquad \gamma = 1 + a_0^2/2$$

drift w velocity $v_d = ca_0^2/(a_0^2 + 4)$

+ in e rest frame:

Matthias Fuchs

Outline

- Electron interacting with a strong electromagnetic field
- Introduction to plasma physics
- Plasma waves
 - Ponderomotive potential
 - Ponderomotive plasma wave excitation
 - Properties of plasma wave
- Laser-plasma acceleration

Laser-matter interaction I: the ponderomotive force eqns of motion $m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -e\vec{E}$ from Lorentz force: revisited: for a wave with $\vec{E} = \vec{E}_0(\vec{x}, t) \cos(\vec{k}\vec{x} - \omega t + \Phi)$ varying amplitude: $\Rightarrow \quad \vec{v}_e(\vec{x},t) = -\frac{e}{m_e} \int \vec{E}_0(\vec{x},t) \cos\left(\vec{k}\vec{x} - \omega t + \Phi\right) dt + \vec{v}_0$ -> quiver motion of electron -> averaging over one oscillation period of the quiver energy ($E_{\rm q} = \frac{1}{2} m_{\rm e} |\vec{v}|^2$) :

=> ponderomotive potential:

-> for a0>1: electron gains energy comparable with rest mass

$$U_{\rm P} = \langle E_{\rm q} \rangle = \frac{e^2}{4m_{\rm e}\omega^2} |\vec{E}_0|^2$$
$$\langle E_{\rm kin} \rangle = U_p = \frac{a_0^2}{2}m_e c^2.$$

Laser-matter interaction II: the ponderomotive force

 $\vec{F}_{\rm P} = -\vec{\nabla}U_{\rm P}$

ponderomotive potential:

ponderomotive force:

$$U_{\rm P} = \langle E_{\rm q} \rangle = \frac{e^2}{4m_{\rm e}\omega^2} |\vec{E_0}\rangle$$

-> is directed along the gradient of a laser-pulse envelope

=> pushes electrons towards regions of lower laser intensity

2

Plasma Waves

laser excites a plasma wave
 ultrashort laser pulse
 "kicks" electrons

- electrons are pulled back by stationary ions
- Selectrons oscillate with plasma frequency: $\omega_{p,0} = \sqrt{\frac{e^2 n_0}{m \epsilon_0}}$

 collective motion forms a plasma wave that is propagating at laser group velocity

no charge transport: just oscillations

Dissertation M. F., after Dawson, Sci. American (1989)

Plasma Waves

Charge separation in the plasma wave

- > set up longitudinal electrical field: laser-wakefield
- particles injected into wakefield get accelerated!

Dissertation M. F., after Dawson, Sci. American (1989)

Derivation of Plasma Wave 1

Delta" force moving with v_l: transfers momentum m_eu₀ at laser front

 $f \simeq m_e u_0 \delta(t - x/v_l)$

Electrons at laser front oscillate with plasma frequency. Electron Velocity:

$$u_x = u_0 \cos(\omega_p \tau) \ \Theta(\tau)$$

 $\tau = t - x/v_l$ $\Theta(\tau) = \begin{cases} 0 & \text{for } \tau \ge 0\\ 1 & \text{for } \tau < 0 \end{cases}$

Plasma Response

Invariant Sector of the se

"cold fluid" equations:

continuity equation:

momentum equation:

Poisson equation:

$$\begin{aligned} \frac{\partial}{\partial t} \delta n + n_0 \vec{\nabla} \cdot \vec{u} &\simeq 0\\ \frac{\partial \vec{u}}{\partial t} &\simeq \nabla \phi - \nabla a_0^2 / 2,\\ \nabla^2 \phi &\simeq k_p^2 \frac{\delta n}{n_0} \end{aligned}$$

 $(a_0 = 0)$

 $\frac{\partial}{\partial t} u_x \simeq \frac{eE_x}{m_e}$

Derivation of Plasma Wave 2

linearized fluid equations:

$$\frac{\partial}{\partial t}n_e \simeq -n_0 \frac{\partial}{\partial x}u_x$$

Electron oscillation

$$u_x = u_0 \cos(\omega_p \tau) \ \Theta(\tau)$$

Electron density: $\delta n_e \simeq n_0 \frac{u_0}{v_1} \cos(\omega_p \tau) \ \Theta(\tau)$

(longitudinal) electric field: $E_x \simeq \frac{m_e \omega_p u_0}{\cos 2} \sin(\omega_p \tau) \Theta(\tau)$ $\delta n_e = n_e - n_0$ $\Theta(\tau) = \begin{cases} 0 & \text{for } \tau \ge 0\\ 1 & \text{for } \tau < 0 \end{cases}$

Plasma Wave Properties

Outline

- Electron interacting with a strong electromagnetic field
- Introduction to plasma physics
- Plasma waves
- Laser-plasma acceleration
 - Discussion: Laser-wakefield acceleration
 - Maximum energy gain
 - Limits of laser-wakefield acceleration

Wakefield

Karlsruher Institut für Technologie

Linear Wakefield
 laser: a₀ = 0.35
 -> sinusoidal density
 perturbation
 -> ~GV/m sinusoidal
 longitudinal el. field

Nonlinear Wakefield laser: a₀ ~ 2 -> can only be solved numerically -> density spikes -> sawtooth el. field (~100 GV/m amplitude)

V. Malka, in Proc. of the CERN Accelerator School (2016)

opagation direction Shadwick, UNL

Wake Properties

For linear wakes:

<u>estimated</u> <u>accelerating</u> <u>field</u>
 (cold non-relativistic wavebreaking limit)

 $E_0[V/m] \simeq 96\sqrt{n_0[cm^{-3}]}$

- for typical densities n₀ = 1x10¹⁸ cm⁻³: E₀ = 100 GV/m !! (= 10 V/Å; close to atomic unit electric field !!)
- size of accelerating structure:
 (~plasma wavelength)

$$\lambda_{p,0}[\mu \mathrm{m}] = \frac{2\pi c}{\omega_{p,0}} = 3.33 \times 10^{10} \left(n_0 [\mathrm{cm}^{-3}] \right)^{-1/2}$$

for $n_0 = 1 \times 10^{18} \text{ cm}^{-3}$: $\lambda_p = 30 \mu \text{m} !!
 (=> or 100 \text{ fs})$

Experimental Observation

non-linear: later buckets become "horseshoe" shaped

Electron Acceleration

Dissertation M.F.

а Potential ϕ 2. laser electrostatic intensity potential of wake ξ_{\min} ξ_{\max} b 120 $H(p_z,\xi) = \sqrt{p_z^2 + 1 + a^2} - \beta_p p_z - \phi(\xi)$ 100 Electron momentum p80 long. é $\xi = z - v_a t$ velocity of 60 momentum plasma wave 40 co-moving frame -> distance from 20 laser pulse -3 -2 0 Comoving coordinate $\lambda_{m}^{-1}\xi$

 electrons inside separatrix are accelerated (red)
 electrons outside (white): background plasma electrons
 (flow backwards wrt laser or slowly overtake wake)

Comoving coordinate $\lambda_n^{-1}\xi$

Wavebreaking

- oscillating plasma electrons form plasma wave
- Issue plasma wave propagates ~with laser group velocity:
 typically: $\gamma_p = 10-100$ (including 3D effects)

-> depends on laser intensity

$$\gamma_e = \frac{(1+a^2) + (1+\phi)^2}{2(1+\phi)}$$

- Self" injection through wavebreaking
 - -> at sufficiently high laser intensity, the electron fluid velocity is higher than plasma wave phase velocity $\gamma_e > \gamma_p$ => wave breaking

Chang & Liu, Phys. Fluids 10 (1) 1998

Electron Injection

Section Trapping

- electrons get trapped (cross into separatrix) at the back of the bucket (at the potential minimum)
- minimum momentum required for trapping

 $p_t = \beta_p \gamma_p (1 - \gamma_p \phi_{\min}) - \gamma_p \sqrt{(1 - \gamma_p \phi_{\min})^2 - 1}$

Dissertation M.F.

Implicitly depends on laser intensity ao and plasma density no

bigger separatrix amplitude

Iower momentum required for higher laser intensities and higher plasma densities

slower wake velocity

Untrapped electron

Electron velocity too small for trapping

Trapped & accelerated electron

Karlsruher Institut f

Electron velocity sufficiently high

10 $\frac{10}{10}$ $\frac{10}{10}$

Matthias Fuchs

 $t_{\text{mave}} = \frac{Lol}{V_g}$

 $t_e = \frac{Ld + \frac{\lambda p}{2}}{C}$

 $V_{g} = \int 1 - \frac{w_{p}^{2}}{w^{2}} c \approx \left(1 - \frac{w_{p}^{2}}{1}\right) c$ - for wplew = $\frac{\lambda p}{\lambda r^2} = \chi^2$ $= t_e = L_d + \frac{1}{2}$ $= \frac{L_d + \frac{1}{2}}{\chi}$ $= \frac{\chi}{\chi}$ thave = te = Ld $L_d \left(\frac{1}{1 - \frac{x^2}{2}} - 1 \right) = \frac{\lambda p}{2}$ $L_d = \frac{2 - x'}{x^2} \frac{\lambda_p}{2}$ $\left(\frac{(\omega_{e})^{2}}{\omega}\right)^{2} = \frac{2}{\chi^{2}} \frac{\lambda_{e}}{R}$ $\frac{1 - (1 - \frac{x^2}{2})}{1 - \frac{x^2}{2}} = \frac{x^2}{2(1 - \frac{x^2}{2})} = \frac{x^2}{2 - x^2}$ $= \frac{w_{P}^{2}}{P} \frac{\lambda_{P}}{P} = \frac{\lambda_{P}^{3}}{P}$

 $\frac{\lambda^2}{\lambda^2}$ $\frac{\lambda^2}{=}$

dephasing length:

distance until electrons (moving with c) outrun accelerating phase

 $L_d \simeq \frac{\lambda_p^3}{\lambda^2} \sim n_0^{-3/2}$

max electron energy: assume const. E₀

$$W_{\rm max} = eE_0L_d \sim \frac{1}{n_0}$$

-0.10

-0.08

-0.06

DISTANCE ξ

-0.04

-0.02

0.00

Karlsruher Institut für

PHYSICAL REVIEW LETTERS 122, 084801 (2019)

Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide

Editors' Suggestion

Featured in Physics

A. J. Gonsalves,^{1,*} K. Nakamura,¹ J. Daniels,¹ C. Benedetti,¹ C. Pieronek,^{1,2} T. C. H. de Raadt,¹ S. Steinke,¹ J. H. Bin,¹ S. S. Bulanov,¹ J. van Tilborg,¹ C. G. R. Geddes,¹ C. B. Schroeder,^{1,2} Cs. Tóth,¹ E. Esarey,¹ K. Swanson,^{1,2} L. Fan-Chiang,^{1,2} G. Bagdasarov,^{3,4} N. Bobrova,^{3,5} V. Gasilov,^{3,4} G. Korn,⁶ P. Sasorov,^{3,6} and W. P. Leemans^{1,2,†}

along the capillary axis [20], and that this structure can extend the LPA length to 20 cm (15 diffraction lengths) at low ($\approx 3.0 \times 10^{17}$ cm⁻³) density. This enabled the generation of electron beams with quasimonoenergetic peaks in energy up to <u>7.8 GeV</u> using a peak laser power of 850 TW.

For L = 20 cm: $W_{max} = 52 \text{ GV/m} * 0.2\text{m} = 10.4 \text{ GeV}$

Other Acceleration Limits: Laser Diffraction

$$Z_R = \pi r_0^2 / \lambda$$

for 25 μ m focus: Zr = 0.5 mm

Guiding

plasma index of refraction:

$$\eta = \sqrt{1 - \left(\frac{\omega_p}{\omega_{las}}\right)^2} = \sqrt{1 - \frac{4\pi e^2 n_e}{m_e}}$$

phase velocity:

$$v_{ph} = \frac{c}{\eta}$$

Matthias Fuchs

How to guide a laser?

"Bubble"-Regime

 \odot for $a_0 >>1$

- electrons also transversally expelled
- completely cavitated spherical ion "bubble" trailing laser pulse
- radius of bubble depends on laser and plasma properties

Lu et al., PRSTAB (2007)

The Bubble

Assume spherical cavity: fields can be derived

using Gauss' Law

 Accelerating field: (linear with distance)

 same field strength across different transv. positions
 Example field at %-D.

- max field at $\xi=R$:

Transverse (restoring)
 field

Vieira, in Proc. of the CERN Accelerator School (2016)

$$E_z(\xi) \simeq \frac{\xi}{2} k_p E_0$$

E₀: nonrel wave breaking limit

Injection into Bubble

<u>"bubble" or blowout regime</u>

- transversally expelled electrons
 -> pulled back by space charge field of ions
- electrons with suitable initial conditions (red) undergo sufficient longitudinal acceleration while bubble passes by
- injection at back of bubble

- electron have finite transverse momentum
- ø perform transv. (betatron) oscillations
 - -> move on sinusoidal trajectory during acceleration
- amplitude of transv. motion decreases with increasing electron energy as: $(r_{\beta} \propto \gamma^{-1/4})$

Bubble dynamics

dynamics and evolution
 highly nonlinear

 detailed description including laser evolution, space charge effects of injected electrons, ... and their feedback on bubble structure need large-scale
 3D particle-in-cell (PIC) simulations

Lu et al., PRSTAB (2007)