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These supplementary notes repeat material that should basically be known from

the BSc lectures and is a prerequisite for the following module. Decide to what

extent you need to recapitulate the material for yourself.
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1 Fundamentals of Special Relativity

Synchrotron radiation is electromagnetic radiation that is emitted during the acceleration of

relativistic charged particles. The description of the particle kinematics and the physics of

the synchrotron radiation must therefore be carried out in the theoretical framework of special

relativity.

The aim of this worksheet is to remind the reader of some basics of special relativity.

Newtonian and quantum mechanics can be described in terms of the group of transformations

in Hilbert space, which leave the norm of position vectors ®G invariant (namely the Galilean

transformations).

This does not apply to Maxwell’s electrodynamics: Here, for example, the description of a

point charge at rest and of a moving point charge with a co-moving observer lead to different

potentials under Galilean transformations, i.e. Maxwell’s equations are not Galilean invariant.

The invariance group of electrodynamics results from the postulates of special relativity:

Postulate 1.1. The laws of physics are independent of the choice of inertial frame. In particular,

for any inertial frame, space is homogeneous and isotropic, and time is homogeneous.

Postulate 1.2. The speed of light is independent of the motion of its source.

2 Notes on the mathematical structure of relativistic space-time

The group of transformations which satisfies these postulates and under which the Maxwellian

electrodynamics remains invariant, is the homogeneous Lorentz group. This group is defined on

a non-Euclidean, four-dimensional space, the relativistic space-time.

Definition 2.1 (Space-time). . The transformations of the Lorentz group operate on the vectors

of the 4-dimensional space-time

(G0, G1, G2, G3) := (2C, ®A) (2.1)

The transformations between two inertial systems  and  ′ moving against each other, which

satisfy the postulates of special relativity, are the transformations of the Lorentz group.

Definition 2.2 (4-norm). On 4-dimensional space-time, the norm of 4-vectors is defined by

∥- ∥2 := (G0)2 − (G1)2 − (G2)2 − (G3)2

= 22C2 − |®G |2.
(2.2)

The Lorentz group contains all transformations that leave the norm of the 4-vectors invariant.

These are the actual Lorentz transformations (see below eq. 3.1) and the normal rotations.

Lorentz invariant kinematics and electrodynamics can be elegantly formulated in the four-

dimensional pseudo-Euclidean space. We will take benefit from the four-vector notation in the

lecture from time to time. In order to provide a little more background to the statements made in

the lecture, we will sketch here some basics of the so-called covariant formulation of relativistic

kinematics and electrodynamics. For an exhaustive treatment, please refer to the textbooks.
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2.1 The light cone

From the Lorentz invariance of the 4-vector norm it follows: The distance between two space-time

points

B212 = 22(C1 − C2)
2 − |®G1 − ®G2 |

2 (2.3)

is invariant under Lorentz transformations.

Therefore, it makes sense to use the concept of the light cone defined by

®G2
= 22C2, (2.4)
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Figure 1: The concept of the light cone in special relativity

and the

Definition 2.3. The spatio-temporal relation of two events (C1, ®G1) and (C2, ®G2) is called

timelike :⇔ B212 = 22(C1 − C2)
2 − |®G1 − ®G2 |

2 > 0

spacelike :⇔ B212 = 22(C1 − C2)
2 − |®G1 − ®G2 |

2 < 0

lightlike :⇔ B212 = 22(C1 − C2)
2 − |®G1 − ®G2 |

2
= 0

(2.5)

Causal relations are only possible between time- or light-like events.

Remark. This classification is also Lorentz invariant.

2.2 Some tensor analysis in four-dimensional non-Euclidean space

Definition 2.4. Let be given a space-time coordinate tuple and a well-defined coordinate trans-

formation with

G′,U = G′,U (G0, G1, G2, G3), (2.6)
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then is called:

0 4-scalar

:⇔ 0 tensor of rank 0 with: 0 invariant under the coordinate transformation G′(G)

� contravariant 4-vector

:⇔ �′ U
=
mG′ U

mGV
�V

� covariant 4-vector

:⇔ �′
U =

mGV

mG′ U
�V

� contravariant tensor of rank 2

:⇔ �′ UV
=
mG′ U

mGW
mG′ V

mG X
�WX

� covariant tensor of rank 2

:⇔ �′
UV =

mGW

mG′ U
mG X

mG′ V
�WX

� mixed tensor of rank 2

:⇔ �′ U
V =

mG′ U

mGW
mG X

mG′ V
�

W

X

(2.7)

Remark. Note that here and in the following the Einstein summation convention for repeated

indices is always applied.

Definition 2.5. In these terms the scalar product of two 4-vectors is defined as:

� · � := �U�
U. (2.8)

The scalar product is a Lorentz scalar, as can be easily proved by inserting the transformation

properties.

2.3 Space-time metric and 4-scalar product

The metric of space-time is given by the invariant norm 2.2:

(dB)2
= (dG0)2 − (dG1)2 − (dG2)2 − (dG3)2

=: 6UVdGUdGV
(2.9)

with the metric tensor

6UV =

©«

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

ª®®®¬
(2.10)
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in matrix representation.

Thus, for co- and contravariant 4-vectors, it follows:

�U
= (�0, ®�)

�U = (�0,− ®�)
(2.11)

Remark. With this metric, the scalar product of two space-time vectors is given by

� · � = �0�0 − ®� · ®� (2.12)

2.4 4-differential operators

The operators of partial differentiation with respect to a contravariant or a covariant component,

respectively, can be formed as:

mU :=
m

mGU
= (

m

mG0

,− grad)

mU :=
m

mGU
= (

m

mG0
, grad)

(2.13)

Remark. The 4-divergence of a 4-vector is the invariant

mU�U = mU�
U
=
m�0

mG0
+ div ®� (2.14)

Finally,

Definition 2.6 (D’Alambert operator).

□ := mUm
U
=

m2

mG0 2
− Δ (2.15)

is the operator of the wave equation in vacuum.

The operator of differentiation by a covariant component behaves like a contravariant vector

operator, and that of differentiation by a contravariant component behaves like a covariant vector

operator.

3 Lorentz transformations and relativistic kinematics

3.1 Simple Lorentz transformation

Let inertial frame  ′ be moving against  with velocity E in positive G direction.
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⇒




G′0 = W(G0 − VG1)

G′1 = W(G1 − VG0)

G′2 = G2

G′3 = G3

(3.1)

®V =
®E

2
, V = | ®V |

W =
1√

1 − V2

(3.2)

More generally, for two inertial systems  and  ′ with parallel coordinate axes with relative

velocity ®E of  ′ against  :

G0′
= W(G0 − ®V · ®G)

®G′ = ®G +
(W − 1)

V2
( ®V · ®G) ®V − W ®VG0

(3.3)

Remember: The Lorentz transformation leads to the phenomena of length contraction and

time dilatation:

If there is a rod of length ; at rest in  , an observer in  ′ will measure the length ;.

;′ =
1

W
;.

If there is a lamp at rest in  which is switched on for a time interval XC, an observer in  ′ will

measure a time interval during which the lamp is switched on,

XC′ = WXC.

3.2 The concept of proper time

Definition 3.1 (Element of proper time). . The element of time in the instantaneous rest system

of a particle (or a clock) is the element of proper time.

dg :=
1

W(C)
dC (3.4)

Remark. dg is Lorentz-invariant because d®G2
= 0 in the system of rest and thus 2dg = dB.
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3.3 4-velocity, relativistic momentum and energy

With the element of proper time, the 4-velocity is given by

+ :=
dB

dg
= W(2, ®E) (3.5)

The 4-momentum % of a particle with rest mass < and velocity + is thus given by

% = <+ . (3.6)

The total energy of such a particle is

, = W<22. (3.7)

Thus the 4-momentum reads

% := (?0, ®?)

with ?0 := ,/2, ®? = W<®E
(3.8)

The norm of the 4-momentum,

(?0)2 − ®? · ®? = (<2)2, (3.9)

is Lorentz invariant. It follows

, =

√
22?2 + <224 (3.10)

Proof.

(?0)2 − ®? · ®? = (W<2)2 − W2<2(®E · ®E)

= W2<2(22 − E2)

= W2<222

(
1 −

E2

22

)

= (<2)2

□

4 Lorentz invariant formulation of electrodynamics

Theorem 4.1. Under the (Lorentz-invariant) condition of the Lorentz gauge

div ®� +
1

22

mq

mC
= 0, (4.1)

the
4-sources: �U := (2d, ®9),

4-potential: �U
= (q/2, ®�)

(4.2)
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are Lorentz invariant 4-vectors.

The wave equation, the continuity equation and the Lorentz condition thus obtain the Lorentz-

invariant form
□ �U

= `0�
U

mU�
U
= 0

mU�
U
= 0

(4.3)

With the electric field tensor

�UV := mU�V − mV�U, (4.4)

or, respectively, in the matrix representation

�UV
=

©«

0 −�G/2 −�H/2 −�I/2

�G/2 0 −�I �H

�H/2 �I 0 −�G

�I/2 −�H �G 0

ª®®®¬
, (4.5)

and the dual electric field tensor

F UV :=
1

2
n UVWX�WX (4.6)

with

�UV = 6UW�
WX6XV (4.7)

and with the 4th-rank totally antisymmetric unit tensor

n UVWX :=



+ 1 for even permutations of indices

− 1 for odd permutations of the indices

0 if two indices are equal

(4.8)

the Maxwell equations in vacuum can also be formulated Lorentz-invariantly under the Lorentz

gauge condition:

mU�
UV

= `0�
V

mUF
UV

= 0
(4.9)

5 Transformation of the electromagnetic fields

The electric field tensor transforms under the transition

 ↦→  ′

according to

�′UV
=
mG′U

mGW
mG′V

mG X
�WX (5.1)
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The Lorentz transformation of the electric field tensor in the case of relative motion of equally

oriented coordinate systems  and  ′ along the common I-axis leads to

� ′
G = W(�G + VI�H) �′

G = W(�G − VI�H)

� ′
H = W(�H − VI�G) �′

H = W(�H + VI�G)

� ′
I = �I �′

I = �I

Under Lorentz transformation between inertial frames with relativistic relative velocities (e.g.

the rest frame of an accelerated particle and the laboratory frame), pure electric or magnetic

fields always become a combination of electric and magnetic fields.

6 Acceleration of charged particles: The Lorentz force

The acceleration of charged particles, as we already know, is described by the Lorentz force

®� =
d ®?

dC
= @

(
®� + (®E × ®�)

)
(6.1)

which can also be expressed in covariant notation. (note: the Lorentz force is Lorentz invariant):

d?U

dg
= @�UV+V (6.2)

Finally, a remark on the stability of particle beams. The fact that beams of charged particles

can be stored in accelerators at all does not seem self-evident in view of their mutual Coulomb

repulsion. The suppression of this repulsion is a consequence of the relativistic motion of the

particles:

Let be given a longitudinally infinitely extended continuous particle beam of velocity E along

an axis B with a constant charge density d0. The electromagnetic fields in B-direction compensate

each other, i.e. due to the cylindrical symmetry of the problem ®� has only a radial, ®� only an

azimuthal component. In the interior of the particle beam these are

�A =
1

2n0
d0A

�q =
`0

2
d0EA.

(6.3)

This gives the radial component of the Lorentz force on a particle at a distance A from the axis.

�A = 4
(
�A − E�q

)
=

4

2n0

(
1 −

E2

22

)
d0A =

4

2n0

d0

W2
A (6.4)

The repulsive force therefore vanishes with W2.

Remark. The same result is obtained (of course) in the rest system of the particle. In this system,

the charge density decreases with 1/W. Another factor 1/W is added by the time dilatation.
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