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1 Introduction: What are and why are synchrotron radiation

sources?

Accelerated charges emit electromagnetic waves

(Krewaldt 1894)

(Stodart 1890)

Heinrich Hertz

(1857-1894)

James Clerk

Maxwell

(1831-1879)

H. Hertz: UNTERSUCHUNGEN UEBER DIE AUS-

BREITUNG DER ELEKTRISCHEN KRAFT (1892)

Fig.: Calculation of the radiation characteristic of a transmitting antenna by applying Maxwell’s

equations. 1888 Hertz succeeded in experimentally proving the existence of electromagnetic

waves and thereby the confirmation of the Maxwell electromagnetic theory of light.

The frequency range of the classical Hertz dipole lies within the MHz range. Visible light or

even X-rays are emitted only in the relativistic case.

The relativistic Doppler effect extends the spectrum into the X-ray range

Albert Einstein

(1879-1955)

(Schmutzer 1921)

• Dilatation of the moving particles proper time

• Boost of the radiation frequency in the laboratory frame by W3
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Even if the term synchrotron radiation seems exotic, it is a fundamental physical phenomenon

that also occurs in nature.
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Natural synchrotron radiation

(NASA - Fermi’s Best-Ever Look at the Gamma-Ray Sky 2020)

The galactic centre is emitting X-rays

Cosmic synchrotron radiation sources

X-ray sources

are for example supernova remnants

NASA, ESA, Hubble Heritage Team

NASA/CXC/SAO

Crab nebula (left: Hubble Space Telescope, top:

detail, X-ray telescope Chandra)

The (microscopic) physical cause of the cosmic X-ray radiation is the deflection of relativistic

electrons in the magnetic fields of other moving charges, as they occur in supernovae, cataclysmic

variables, but also in single and double stars with coronal activity (see e.g. Sazanov and

Revnivtsev 2006).
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Synchrotron light sources on earth

Synchrotron light sources are particle accelera-

tors,

(Soleil 2005)

(Fenner 2013)

designed for the generation and use of syn-

chrotron light.

In “terrestrial” synchrotron radiation sources, electrons are accelerated to relativistic energies.

When the particles are deflected in the dipole magnets, which keep the particles in a circular path,

synchrotron radiation is released. Higher intensities can be achieved through multiple deflection

in so-called insertion devices.

There are now four generations of synchrotron radiation sources:

1. particle accelerators for High-energy physics with parasitic use of synchrotron radiation

2. photon flux-optimised storage ring sources with use of wigglers (e.g. DORIS Hamburg,

SRS Daresbury)

3. photon brilliance-optimised storage ring sources with the use of undulators (e.g. ESRF

Grenoble, diamond Oxford, Soleil Paris, ALBA Barcelona, ...)

4. linear accelerator-driven sources with extremely high photon photon brilliance/coherence

(e.g.: free-electron laser LCLS Stanford, FLASH, XFEL Hamburg; Energy Recovery

Linac projects BERLinPro Berlin, Cornell ERL, MARS Novosibirsk)

Our local KIT synchrotron radiation source is in this count about at 2.5.
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The broad spectrum of synchrotron radiation and its applications

• spectrum from the far infrared to the hard X-ray range

• Experimental use especially of the IR and X-ray radiation

• Variety of imaging, spectroscopic and diffraction meth-

ods

• Application in Solid state physics, chemistry, molecular

biology, geology, materials science, medicine...

The use of synchrotron radiation for research into (electromagnetically interacting) condensed

matter is the topic of other lectures and can only be briefly touched upon here. The variety of the

of analytical methods using the spectral range of X-rays is overwhelming at first sight. However,

one can distinguish three main classes of methods, which are used in a multitude of combinations

and modifications:

Methods I: Imaging (spacial resolution)

Wilhelm Conrad

Röntgen

(1845-1923)

(anonym 1900)

Figure 1: X-ray image of Al-

bert von Kölliker’s hand

(Röntgen 1896)

(van de Kamp et al. 2018)

Figure 2: Example for modern imaging: X-ray mi-

cro tomography on petrified insect pupae with

parasite (ichneumon wasp)

Swiss Light Source

Figure 3: Example for

phase contrast imaging

of soft tissue: rat heart

Albert von Kölliker was the founder of the Physikalisch-Medizinische Gesellschaft (Physical-

Medical Society), where Röntgen on 23 January 1896 demonstrated the recently discovered

X-rays.

At the synchrotron, high-resolution tomograms (i.e. 3D reconstructions from 2D tomograms)

can be measured with high throughput or at high speed, enabling real-time 3D X-ray movies. In

the cited example, a large number of samples (fossilised insect pupae) were tomographed and
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used for a systematic study of the interplay of the evolution of hosts and parasites.

The image show A: Petrified pupa of the host animal, B: Volume rendering, C: Perspective

view of a parasitic wasp Xenomorphia resurrecta, D: female wasp Xenomorphia resurrecta with

unfolded wings, E: Illustration of oviposition by a female ichneumon wasp into the host pupa.

(van de Kamp et al. 2018).

Imaging techniques can be further differentiated according to the contrasting effect: absorp-

tion, anomalous absorption (in the vicinity of absorption edges), phase modulation (refraction),

fluorescence, etc. The use of phase contrast allows X-ray imaging even on soft tissue with low

absorption contrast, as shown here in the example of an absorption and a phase contrast image

of a rat heart.

Methods II: Spectroscopy (energy resolution)

(Denecke et al. 2005)

Figure 4: Example: microfluorescence mapping of

trace elements in uranium-rich sediments

Figure 5: Example: X-Ray Absorption Near

Edge Spectroscopy (XANES): Crystal chem-

istry of iron in meteorites

(Beck et al. 2012)

The classical spectroscopic techniques are absorption and fluorescence spectroscopy. These

methods allow (via detection of the absorption edges or fluorescence lines). an identification

of the elements contained in a sample and (via the fine structure of these edges or lines) of

their chemical environment. The shown examples are already a combination of imaging and

spectroscopic methods. In contrast to the aforementeioned absorption contrast methods, where

the spatial resolution is determined by the spatial resolution of the detector, the spacial resolution

here is achieved by scanning the sample with a finely focussed X-ray beam. The sub-micrometre

focusability is owed to one of the most prominent properties of synchrotron radiation, namely its

high brilliance.

Example. (Fig. 4) Study of the immobilisation of radioactive elements during geogenesis.

Uranium-rich “hot spots” accumulate preferentially on Fe(II) minerals. The example image

shows 120 × 120 µm2-element maps of the environment of an Fe(II) node. The node is sur-

rounded by a thin layer of As, to which the uranium is bound.

Interpretation: U(VI) dissolved in groundwater is reduced in the vicinity of arsenopyrite to

U(IV), which is less soluble and precipitates.

Example. (Fig. 5) View into the history of the solar system: transmission images of a sliver of the

meteorite Murchison above and below the iron  edge (left), energy mapping of the absorption
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edge (top right) and scanning electron microscope image (bottom right). The examined meteorites

are carbonaceous chondrite specimens, which are considered to be fragments from the early

history of our solar system. The spectroscopic data provide information on the oxidation state

of the iron in these samples. This in turn allows conclusions on early reactions involving liquid

water, which must have taken place on the planets or asteroids from which these fragments

originated.

Methods III: Diffraction (momentum resolution)

source: Matthias M. 2008

X = 23 sin \ = =_

Figure 6: Max v. Laue: Laue

diagram of zinc blende

Figure 7: Modern protein crystallography

Often it can be deduced from the structure of biological macromolecules (proteins, enzymes)

to their functionality. Protein crystallography is one of the most important fields of application

of synchrotron radiation. For this purpose, the macromolecules are crystallised, and the the

structure factor of the unit cell, representing th molecular structure, is reconsturced from the

intensity distribution of the reflections visible in the Laue diagram. For that purpose, of course,

many reflections need to be recorded and evaluated with high signal to noise ratio, which in turn

requires a high photon flux.
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An almost current example

source: Kungl. Vetenskaps Akademien, Stockholm

Figure 8: Nobel Prize in Chemistry 2012 for Robert Lefkowitz

and Brian Kobilka: Elucidation of the structure and func-

tioning of G protein-coupled receptors

The Nobel Prize in Chemistry 2012 is a beautiful example of the elucidation of macromolecule

structures with synchrotron radiation, which can then be used to understand fundamental mech-

anisms of cell biology. The interested reader is recommended to take a look at the publications

of the Swedish Royal Academy of Sciences (Sciences 2012).

But back to the general.

Diffraction is the experimental access to the structure of matter as well as to dynamics on the

molecular level (fluid dynamics, lattice dynamics). The diffraction methods are not limited to

the atomic scale (classical Bragg or Laue diffraction), but extend to the methods of small-angle

and ultra-small-angle scattering, which correspond to larger correlation scales up to the nano

and micro metre range.

Combinations of diffraction and imaging methods are also used. The most important method

here is topography, the imaging of Bragg reflections in real space. With this method, the stress

field in the lattice of a single crystal can be imaged, which is formed due to dislocations and

disordered sites.

The mentioned method classes are used in a multitude modifications and combinations. By

exploiting the fact that synchrotron radiation sources are inherently polarised and pulsed sources,

further dimensions can be added. Dichroism, i.e. the polarisation-dependent absorption, for

example, is used to study magnetism. Time-resolved methods play an increaslingly important

role in studying the functionality of biomolecules or analysing the course of chemical reactions.

It is to be noted: The special properties of synchrotron radiation — brilliance, broad spec-

trum, polarisation, time structure — have stimulated the development of methods. Conversely,

the evolving experimental requirements of users stimulate accelerator development for the op-

timisation of specific source characteristics up to the development of completely new source

concepts such as the free-electron laser.

In this lecture, we will discuss accelerator physics — among other things — under the aspect of
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its application for synchrotron radiation sources. The interaction between method development

on the user side and technological development on the accelerator side can, however, can only

be kept in view to a certain extent. In this respect, for a more comprehensive picture, the courses

that focus on the use of synchrotron radiation are recommended.
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2 Electrodynamics of moving point charges

The properties of synchrotron radiation, as exotic as they may seem, are of a fundamental nature.

The physics of the electromagnetic fields radiated by accelerated charges from accelerated charges

is, as H. Hertz has shown, completely contained in Maxwell’s equations. For the physics of

synchrotron radiation, the postulates of special relativity are added.

That it took a H. Hertz to deduce the properties of of electromagnetic waves from Maxwell’s

equations, suggests, however, that Maxwell’s equations do not reveal these properties too obvi-

ously. In this respect we will also spend some time on this.

2.1 Preface to the System of units

In electrodynamics there are several different systems of units in use, in particular the Gauß or

cgs- and the SI or MKSA-. MKSA-system.

In addition, one finds the electrostatic (esu), the magnetostatic (emu) and the Heaviside-Lorentz

system of units.

In this lecture, the SI system is used.

The SI system of units of electrodynamics is given by the following relations of the vacuum

natural constants (permeablilty, dielectric constant, velocity of light):

`0 = 4c10−7 V s

A m
, n0`02

2
= 1 (2.1)

For the observables of classical electrodynamics the following relations result for the translation

between Gaußand SI system:

Electrodynamic systems of units

Gauß MKSA

Speed of light 2
√
`0n0

Electric field, potential ®� , Φ
√

4cn0 ®� , Φ

El. displacement field ®�
√

4c
n0

®�
Charge density, charge, current density, current,

polarisation

d, @, ®9 , �, ®% 1√
4cn0

d, @, ®9 , �, ®%

Magnetic flux density ®�
√

4c
`0

®�
Magnetic field strength ®�

√
4c`0

®�

The Gaußsystem is relatively widely used in the accelerator physics literature (which is not

always explicitly mentioned). With the help of the table above, the formulas expressed in different

systems of units can be can be translated into each other.
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2.2 Integration of the inhomogeneous Maxwell equations

We start from the inhomogeneous Maxwell equations

div ®� =
1

n0
d

rot ®� − 1

22

m ®�
mC

= `0
®9



mU�

UV
= `0�

V (2.2)

®� and ®� can be derived from the electric and magnetic potentials

®� = rot ®�

®� + m
®�
mC

= − grad q



�UV

= mU�V − mV�U (2.3)

Under the Lorentz gauge condition

div ®� + `0n0
mq

mC
= 0 bzw. mU�

U
= 0 (2.4)

substituting the potentials into the inhomogeneous Maxwell equations yields for each potential

the inhomogeneous wave equation

Δ q − 1

22

m2q

mC2
= − 1

Y0

d

Δ ®� − 1

22

m2 ®�
mC2

= −`0
®9



□ �V

= `0�
V (G) (2.5)

The integration of the inhomogeneous wave gl. for each potential component (here in 4-

potential notation) ?? is done by means of a Green function

�U (G) = �U
hom(G) + `0

∫
d4G′� (G, G′)�U (G′) (2.6)

with

□� (G, G′) = X(G0 − G0′)X(®G − ®G′) (2.7)

Note: G, G′ denote 4-vectors here, �U
hom

(G) is the solution of the homogeneous wave equation.

Remark. In the absence of boundary conditions

� (G, G′) = � (G − G′). (2.8)
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Solution of the equation 2.1 leads to two solutions (for the sake of clarity now explicitly written

as a function of Cartesian space coordinates and time),

�A (2(C − C′), ®G − ®G′) =



0 for C − C′ < 0

1

4c'
X(2(C − C′) − ') for C − C′ > 0

retarded Green function

�0 (2(C − C′), ®G − ®G′) =



1

4c'
X(2(C − C′) − ') for C − C′ < 0

0 for C − C′ > 0

advanced Green function

(2.9)

Thereby the spatial distance was introduced

' := | ®G − ®G′ | (2.10)

Proof. (sketch) The Green function can be calculated by a Fourier transformation of the inho-

mogeneous wave equation: (
Δ− 1

22

m2

mC2

)
� (®A , C) = X(C − C′)X(®A − ®A ′)

�)−−→
(
®: · ®: − l2

22

)
�̂ ( ®: ,l) = 1

(2c)2

(2.11)

From this one obtains the Green function in space-time coordinates by back-transformation

� (®A , C) = 22

(2c)4

∫
33:

∫
3l

4−i( ®: · ®A−lC )

(l + 2:) (l − 2:)

=
2

(2c)2

1

A

� (C)
2i

(X(A − 2C) − X(A + 2C))
(2.12)

with the integral over the time component

� (C) :=

∫ ∞

−∞
3D
4−iDC

D
(2.13)

The evaluation of this integral with the help of the residue theorem leads to two solutions and

thus to our two Green functions:

�+(C) = lim
n→0+

∫ ∞+in

−∞+in

3D
4−iDC

D
=

{
0 for C < 0

−2ci for C > 0

�− (C) = lim
n→0+

∫ ∞−in

−∞−in

3D
4−iDC

D
=

{
2ci for C < 0

0 for C > 0

(2.14)

□
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Remark. The retarded Green function is different from zero only on the forward light cone, the

advanced one only on the backward light cone emanating from the source point G′. Solving the

inhomogeneous wave equation 2.1 with the retarded (advanced) Green function, the solution of

the homogeneous wave equation �U
hom

(G) acquires the sense of an outgoing (incoming) wave for

G0 → ∞ (G0 → −∞).

The Green functions can be put into covariant (i.e. invariant under Lorentz transformations)

form:

�A (G − G′) =
1

2c
\ (G0 − G0′)X

(
(G − G′)2

)
�0 (G − G′) =

1

2c
\ (G0′ − G0)X

(
(G − G′)2

) (2.15)

Proof.

X
(
(G − G′)2

)
= X

(
(G0 − G0′)2 − |®G − ®G′ |2

)
= X

(
(G0 − G0′ − ') (G0 − G0′ + ')

)
=

1

2'

(
X(G0 − G0′ − ') + X(G0 − G0′ + ')

)
□

The above applies in general to the integration of the inhomogeneous wave equation. In the

following, this is now specialised to moving point charges.

2.3 Solution of the inhomogeneous wave equation for a point charge

Charge and current density of a point charge moving with respect to an inertial frame  :

d(®G, C) = 4X(®G − ®A (C))

®9 (®G, C) = 4d®A
dC
X(®G − ®A (C)).

(2.16)

Here (and in the following) A = (A0, ®A) denotes a space-time point on the orbit of the point charge,

G = (G0, ®G) a general space-time point, henceforth the observation point.

This source term can be transformed with the 4-vector AU (g) as a function of the proper time

g and the 4-velocity + U into the covariant form

�U (G) = 4
∫

3g+ U (g)X (4) (G − A (g)) (2.17)

Remark. Once again, as a reminder, in the inertial frame  the following applies:

AU = (2C, ®A (C)),
+ U

= (W2, W®E)
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The integration of the inhomogeneous wave equation by means of a retarded Green function

yields the Liénard-Wiechert potentials

�U (G) = `0

4c

4+ U (g)
+ · (G − A (g))

����
g=g0

. (2.18)

or in the more familiar non-covariant notation

q(®G, C) = 1

4cn0

[
4

(1 − ®V(C′) · ®=(C′))'(C′)

]
ret

�(®G, C) = `0

4c

[
4 ®V(C′)

(1 − ®V(C′) · ®=(C′))'(C′)

]
ret

(2.19)

with the vector of the observation direction

®=(C′) = ®G − ®A (C′)
'(C′) (2.20)

and the retardation condition

(G − A (g0))2
= 0

↔ (C − C′(g0)) − |®G − ®A (g0) |/2 = 0

⇔ C′(g0) = C −
'(g0)
2

(2.21)

Proof. Execution of the spatial integral over the 4-current density with the Green function leads

to

�U (G) = `0

2c
4

∫
dg + Uo

(
G0 − A0(g)

)
X
(
(G − A (g))2

)
. (2.22)

The residual integral over the proper time yields contributions only for g = g0, where g0 is defined

by the retardation condition

(G − A (g0))2
= 0

⇒ (G0 − A0(g0)) − |®G − ®A (g0) | = 0
(2.23)

As is well known,

X [ 5 (G)] =
∑
8

X(G − G8)����
(
3 5

3G

)
G=G8

����
,

if all G8 are simple zeros of 5 (G). Furthermore,

d

dg
(G − A (g))2

= −2 (G − A (g))V +V (g), (2.24)

with zero g = g0. Substitution and evaluation of the delta distribution in ?? leads to ??. □
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time
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Figure 9: The retardation condition C′ (g0) = C − ' (g0 )
2

The retardation condition states that at the observation point G only an effect of the point charge

can be observed that was caused by it at an intersection of its world line with the backward light

cone. In other words, the effect (fields) of the moving charge propagates with (the finite) speed

of light.

2.4 Derivation of the fields from the retarded potentials

The electromagnetic field tensor is derived from the 4-potential according to

�UV (G) = mU�V − mV�U. (2.25)

Carrying out this differentiation yields

�UV (G) = 4`0

4c

1

+ · (G − A)
d

dg

( (G − A)U+V − (G − A)V+ U

+ · (G − A)

)����
g=g0

, (2.26)

and finally in explicit, non-invariant form:
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®� (®G, C) = 4

4cn0

[
®= − ®V

W2(1 − ®V · ®=)3'2
+ 1

2

®= × [(®= − ®V) × ¤®V]
(1 − ®V · ®=)3'

]
ret

®�(®G, C) = 1

2

[
®= × ®�

]
ret

(2.27)

with ®= again being the directional vector from the emission point to the observation point in the

laboratory system, and ' the spatial distance betseen the emission and observation points in the

laboratory system.

Discussion

Equation ?? consists of two terms:

1. ∝ ®V, ∝ 1/'2 velocity field

near field

2. ∝ ¤®V, ∝ 1/' acceleration field

far field

radiation field

Remark. The static limit ( ®V = 0,
¤®V = 0) of Eq. ?? is the Coulomb equation

®� =
4®=

4cn0'2
. (2.28)

Remark. The power flux density, given by the Poynting vector

®( =
1

`0

( ®� × ®�)
����
ret

=
1

`02
®� × (®= × ®�)

����
ret

=
1

`02
(�2®= − (®= · ®�) ®�)

����
ret

,

(2.29)

is proportional to �2 has three contributions:

1. near field contribution ∝ 1/'4

2. radiation field contribution ∝ 1/'2

3. mixed term ∝ 1/'3

The total emitted power can be calculated by integrating the Poynting vector over a sphere. Doing

so, it turns out that only the radiation field term contribution is independent of ', whereas the

other two become negligible for large '.

In other words: Only the radiation field contribution transports power into open space.

Therefore in the following the drop the near field terms, which is called the far field approxi-

mation.
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2.5 radiated field and emitted power

In the following, we will now discuss the radiation term of the electric field in order to deter-

mine the emitted radiation power and its angular distribution. For this purpose, the following

preliminary remark on emitted and observed radiation fields.

Remark. The time dependence of the radiation field observed at time C, which was emitted at a

time C′ = C − '(C)/2, obviously depends on the relation between emission and observation time.

In particular, an energy emitted during an emission time interval ΔC′ can arrive at the observer

during a much shorter time interval ΔC.

0τr(  )

τ
0

R(  )

τr(  )

t’+∆t’

light cone

x

t’

t
t+∆t

space

time

Figure 10: relationship between emission and observation time interval

This leads to the necessity of distinguishing emitted power %(C′) and observed power %G (C).
The full information about the angular and spectral distribution of the radiation to be observed

is of course contained in the expressions for the observed power. On the other hand, the emitted

and observed energy and thus also the time-averaged emitted and observed power must be the

same. Therefore, it is possible to derive some essential properties of synchrotron radiation from

the expression for the emitted power %(C′). As we shall see in a moment, this is a considerable

simplification, since the consideration becomes independent of the explicit relation between

observation and emission time. What is lost, however, is the information about the spectral

properties of the radiation. We will gain this information later from the discussion of the special

cases relevant to us.

Transition from the observed (retarded) to the emitted radiation field:

The Poynting vector of the radiation field is:

®( =
�2

`02
®= (2.30)

=
1

'2

d2,

dΩdC
®=. (2.31)
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That is, the Poynting vector represents the energy flux per observer time interval per unit area

'2dΩ.

Let us now consider the emitted power flux

d%

dΩ
:=

d2,

dΩdC′

=
d2,

dΩdC

dC

dC′

(2.32)

Thus, to consider the emitted power, only the relation of the time differentials is relevant,

dC =
dC

dC′
dC′

. =
d

dC′

(
C′ + '(C

′)
2

)
dC′

= (1 − ®= · ®V)dC′,

(2.33)

not the dependency C (C′).
We thus obtain

d%

dΩ
=
'2 | ®� |2
`02

(1 − ®= · ®V) (2.34)

Every instantaneous acceleration can be divided into a longitudinal and a transversal component.

Technically, one of these components usually occurs in each case: In the case of deflection by

magnetic fields, there is no longitudinal component; electric fields (in particle accelerators) are

usually used for longitudinal acceleration alone. As we will see, practically only the transverse

case plays a role in the generation of synchrotron radiation.

2.6 Transverse and longitudinal acceleration

The coordinate system

In the following, the following coordinate system is used: The positively (!) charged particle

moves in positive I-direction through the origin at the time of emission and is accelerated either

transversely by a homogeneous magnetic field directed in negative H-direction or longitudinally

by an electric field directed in positive I-direction (the figure shows the transverse case treated

first).

The general observation point is called %, the corresponding position vector (= distance vector

from the charge to the observation point) ®'. Also drawn are the polar coordinates (o, i).
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Figure 11: Coordinate system for the description of normal synchrotron radiation

In these coordinates

®= = ©
«
sin o cos i

sin o sin i

cos o

ª®
¬

unit vector in direction of observation ®V = V
©
«
0

0

1

ª®
¬

(2.35)

Transverse acceleration

Let a positively charged particle of normalised velocity V move in a magnetic field ®� pointing

in the −H direction. Then it is momentarily moving on a circular path whose radius is given by

equating the centripetal and Lorentz forces:

W<(2V)2

d
= 42V�

⇔ 1

d
=

4�

<2VW

(2.36)

Thus

®V =
©
«
0

0

1

ª®
¬

,
¤®V =

V22

d

©
«
1

0

0

ª®
¬

(2.37)

This is inserted into the expression for the radiation term in Eq. ?? yields

®� = − 4V2

4cn0'd

1

(1 − V cos o)3

©
«
1 − V cos o − sin2 o cos2 i

− sin2 o cos i sin i

− sin o cos i(cos o − V)
ª®
¬

(2.38)
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and with Eq. ?? finally for the power flow:

Power flow:

d%⊥
dΩ

=
3

2

%⊥0

4cW4

(1 − V cos o)2 − (1 − V2) sin2 o cos2 i

(1 − V cos o)5
(2.39)

With the radiant power integrated over the solid angle

%⊥0 =
2

3

42 ¤®V2W4

4cn02
(2.40)

®V ⊥ ¤®V: Angular distribution of radiation

dP/dΩ, φ = 0

z

x

β = 0

dP/dΩ, φ = π/2

z

y

β = 0

z

x

β = 0.3

z

y

β = 0.3

z

x

β = 0.8

z

y

β = 0.8

Figure 12: Polar diagrams of radi-

ated power flux when moving in

I-direction and accelerating in G-

direction

Transverse acceleration, ultrarelativistic case

Remark. The angular distribution of the radiant power flux has a nodal line at

o0 = arccos V,

which in the ultra-relativistic case tends to

lim
W→∞

o0 =
1

W
.

Overall, the fraction of radiated power into a cone with opening angle o0:

1

%T0

∫
o≤o0

dΩ
d%

dΩ
=

1

2

(
1 + 9

16
V

)
≥ 1

2
∀V
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Thus, in the ultrarelativistic case, the emission angles are of order 1
W

and it can be approximated

1 − V cos o ≈ 1 − V + Vo
2

2

=
1 − V2

1 + V + Vo
2

2

≈ 1

2W2
(1 + W2o2)

(2.41)

Thus

®� = − 4W4

cn0'd

1

(1 + W2o2)3

©«
(1 − W2o2) cos i

−(1 + W2o2) sin i

0

ª®¬
(2.42)

Remark. From this we can already read the essentials of polariasation.

With these approximations the angular distribution of the radiated power can be written:

d%⊥
dΩ

= %⊥0
3W2

c

1 − 2W2o2 cos(2i) + W4o4

(1 + W2o2)5

%⊥0 =
2

3

A02<2
2W4

d2

(2.43)

Here we introduced the classical particle radius

A0 :=
42

4cn0<22
. (2.44)

Here, as above, it is assumed that the charged particle is kept on its circular path by a constant

magnetic field. Note: For a given circular path (as is the case in the synchrotron), the radiated

power goes with W4. The radiation angle o scales with W.
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®V ⊥ ¤®V: ultra-relativistic case
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Figure 13: angular distribution of radi-

ant power under transverse accelera-

tion in the ultrarelativistic case

Longitudinal acceleration

In this case

®V =
©«
0

0

1

ª®¬
¤®V = ¤V ©«

0

0

1

ª®
¬

(2.45)
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and thus
®V × ¤®V = 0. (2.46)

In the same way as for the transversal case we get

d%∥
dΩ

=
42 ¤®V2

(4c)2n02

sin2 o

(1 − V cos o)5
(2.47)

=
3

2

%∥0

4cW6

sin2 o

(1 − V cos o)5
(2.48)

with %?0A0;;4;0 =
2

3

A0<2
2 ¤®V2W6

2
(2.49)

again being the integral radiant power.

®V ∥ ¤®V: Angular distribution of radiation
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Figure 14: Polar diagrams of radiated

power flux when moving in I-direction

and accelerating in I-direction

angle of maximum radiation: cos o< =

√
1 + 15V2 − 1

3V
(2.50)

Remark. In the longitudinal case, the radiation fields are cylindrically symmetric about I.

Longitudinal acceleration, ultrarelativistic case

For the logitudinal case and the angle of maximum radiation, the same approximations can be

derived as for the transverse acceleration:

d%∥
dΩ

= %∥0

12W2

c

W2o2

(1 + W2o2)5
, lim

V→1
o< =

1

2W
(2.51)
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Discussion: momentum change and radiated power

In order to correctly interpret the results found for the radiated power under longitudinal

transversal acceleration, these must be related to the momentum change, i.e. to the Lorentz force

acting in each case. For this purpose, let us once again consider the equation of motion:

38 5 5 ®?
dC

= <W
38 5 5 ®E

dC
+ <®E d

dC
(2.52)

But it is
dW

dC
=

dW

dV

dV

dC

= W3 V

2

dE

dC
.

Therefore
d ®?
dC

= <W
d®E
dC

+ <W3 V

2

dE

dC
®E. (2.53)

From this we can derive for the transversal and the longitudinal equation of motion:

case 1: ®� ∥ ®E −→ ¤E®E = ¤®EE
It follows:

d ®? ∥
dC

= <W
(
1 + W2V

E

2

) d®E ∥
dC

= <W3
d®E ∥
dC

. (2.54)

case 2: ®� ⊥ ®E −→ dE
dC

= 0.

It follows:

d ®?⊥
dC

= <W
d®E⊥
dC

(2.55)

Thus, in summary:

¤®?⊥ = <W2
¤®V⊥ . ¤®? ∥ = <W32

¤®V∥ ,

and thus

%⊥0 =
2

3

A0
¤®?2
⊥W

2

<2
%∥0 =

2

3

A0
¤®?2
∥

<2
(2.56)
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