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4 Photon flux, brilliance, peak brilliance

When characterising synchrotron radiation sources, it is common practice to specify the spectrum

of the photon flux or brilliance instead of the spectrum of the synchrotron radiation beam power.

The conversion of the power spectrum into a flux spectra is done by an ad hoc quantisation of

the result obtained in the classical way. This is justified by the fact that the accelerated particles

are obviously in states with high quantum numbers, i.e. (from the point of view of quantum

mechanics) at the classical limit.

Transition to photon flux spectrum through quantisation

,W = ℏl. (4.1)

This can be used to specify the

spectral photon flux :=
number of photons

time, relative band width
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0.1%bw
(4.3)

with the critical energy

,W2 := ℏl2. (4.4)

This can be applied accordingly to the spectral and angular distribution and the parameters

related to the stored ring current. If the angular distribution is integrated over a limited solid

angle range (or a limited area at a fixed distance), the result is the flux through a pinhole, a

quantity often used to characterise the source.

The most commonly used quantity to characterise the performance of synchrotron radiation

sources is the (time-averaged) brilliance (also brightness) (see e.g. Shen 2001):

brilliance =
spectral flux

source size × divergence

� :=
d ¤=

d,W/,WfG

√
f2
G′ + f2

W′fH

√
f2
H′ + f2

W′

(4.5)

The brilliance thus additionally refers to properties of the electron beam, or more precisely, its

phase space volume. The smaller this phase space volume, the greater the brilliance.

Remark. The source divergence is composed of the divergence of the electron beam fG′ and

fH′ and the divergence of the photon beam fW′ . If the emission averaged over a longitudinal

path (as in the case of the undulator), then instead of the size of the electron beam cross-section

the apparent source size is considered, which additionally takes into account the electron beam

divergence over the length of the undulator.
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Remark. The definition of brilliance given here is a rather heuristic one. A fundamental definition

can be given in the context of Gaussian optics; the interested reader is referred to Kwang-Je Kim

1986 and Huang 2013, for example.

The brilliance is directly related to the transverse coherence of the radiation.

For the coherent flow, we obtain

d ¤=2
d,W/,W

=

(
_

2

)2

� (4.6)

and for the coherent fraction

?2 =
d ¤=2/d,W/,W

d ¤=/d,W/,W
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√
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(4.7)

This contribution is also < 1% for 3rd-generation sources. These relationships can

also be rigorously demonstrated within the framework of Gaussian optics (Kwang-Je Kim 1986;

Kwang-Je Kim 1989; Huang 2013).

Flux and brilliance – examples
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Figure 21: Integral photon flux at the bending mag-

net: KARA, Diamond and ESRF
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Figure 22: Brilliance at the bending magnet:

KARA, Diamond and ESRF

Finally, to also take the radiation pulse length into account, one can consider not only the

transverse but also the longitudinal phase space volume of the electron beam. The brilliance per

radiation pulse related to the pulse duration is called peak brilliance (peak brilliance).

�̂ :=
�

fga
(4.8)

with fg : pulse duration, a repetition frequency. This quantity particularly highlights the

special source properties of free-electron lasers, which are characterised by an extremely high
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photon number in the single pulse (due to the coherent emission of all electrons in the electron

bunch) and an extremely short pulse duration (<100 fs).

At this point, a critical note is in order.

Dedicated synchrotron radiation sources

“Moore’s Law” for synchrotron radiation sources

The increase in the performance of synchrotron radiation sources over the last 30 years is most

dramatically expressed in the brilliance. This increase in brilliance is due to three developments:

• The construction of large synchrotron radiation sources with energies in the range 6..8 GeV

(ESRF, APS, SpRing8, PETRAIII) with a corresponding increase in radiation power (but:

too much radiation is not good either; the enormous radiation power at SpRing8 (8 GeV)

causes considerable heat load and radiation protection problems)

• The installation of insertion devices

• The reduction of the electron beam emittance

In the last case, the increase in brilliance is not accompanied by an increase in flux.
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Show me your brilliance plot, ... ... and I’ll tell you who you are

Figure 23: Brilliance of the Cornell ERL Figure 24: Flux of the Cornell-ERL

Now, the development of 4th generation synchrotron radiation sources is also bringing further

increases in brilliance, although these do not necessarily go hand in hand with a corresponding

further increase in the photon flux. This raised the question of what the user ultimately needs:

Flux, brilliance or even peak brilliance?

The answer is: what the user ultimately needs is as many photons as possible in his detector.

Depending on the experiment, however, the requirements on the source properties (high brilliance,

high peak brilliance or high integral photon flux) can be quite different.
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5 Undulators and Wigglers — Introduction

Modern synchrotron radiation sources (so-called 3rd generation sources) are characterised by the

fact that they are optimised for operation with special magnet structures to generate particularly

intense synchrotron radiation. These magnet structures are installed in magnet-free straight

sections (insertions) and are therefore referred to generically as insertion devices.

Insertion devices play a role not only as local radiation sources in 3rd generation storage

ring sources, they are also used to damp the transversal electron motion (the so-called betatron

oscillations) and are an essential component of free-electron lasers. In the latter context in

particular, we will come back to the physics of undulators again later.

The planar undulator/wiggler

Idea:

Multiple deflection and intensity or amplitude multiplication

e
R

z

y

x

B

ψ
0

λ

N
S

N
S

N
S

NN
S

S

S

N
N

N

N

N

N

N

N

S

S

S

S

S

S

Figure 25: Schematic of an insertion device: alternating magnetic field and sinusoidal path.

Common feature of insertion devices: magnetic structure consisting of several dipoles with

zero total deflection and zero total offset.

Most important example: planar harmonic magnetic field:

�(I) = �H = �0 cos

(
2c

_u

I

)
= �0 cos :uI (5.1)

with _u : period length of the insertion device.

If the field �0 is relatively weak, the following applies to the motion of ultrarelativistic particles

along the I-axis in a good approximation

G(I) = 0 cos :uI,
dG

dI
= −0:u sin :uI = −k0 sin :uI (5.2)

with
0 := amplitude of the trajectory

k0 := maximum angle of the trajectory against the I-axis
(5.3)
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The maximum angle of the trajectory, in relation to the ‘aperture angle of the emitted radi-

ation, is an important parameter for classifying the insertion devices; it plays a crucial role in

determining the properties of the emitted radiation.

Undulator parameter:

 u :≈ k0

1/W (5.4)

This equation reflects the essential meaning of the undulator parameter, but it is not a completely

correct definition. We will give the exact definition later.

With regard to  u, insertion devices can be divided into two main classes:

• Wiggler:  u ≫ 1

– strongly modulated field

– essentially incoherent addition of the fields radiated at each pole (%W ∝ #p with

#p =number of poles)

• Undulator:  u ≲ 1

– weakly modulated field

– ‘Overlap of the radiation cones of

– partially coherent ’undulator radiation, constructive interference for certain wave-

lengths

– quasimonochromatic radiation with %u ∝ #2
u , #u =number of periods

Photon flux of insertion devices
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Figure 26: Spectral photon flux (calculated) of a bending magnet, a 1.8 T wiggler and the U35 undulator

at the European Synchrotron Radiation Facility (ESRF)
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Remark. As we shall see later, the motion of the electron in the undulator field is in reality not

a pure sinusoidal oscillation but a periodic motion with Fourier components of higher order as

well. This means that the radiation spectrum not only shows the fundamental frequency (in

the example of Fig. 26 at about 2.7 keV), but also higher harmonics at integer multiples of this

fundamental frequency.

The wiggler case seems to be the more intuitive one at first. #-fold deflection leads to an

#-fold increase in the radiated intensity while preserving the spectral properties of the radiation.

In fact, the physical description for the undulator case, especially in the limit of very weak

deflection, is the simpler one. To distinguish this case, which is also initially treated in this

lecture, a further distinction is made:

• Weak undulator  u ≪ 1:

Undulator in the strict sense with quasi-monochromatic radiation.

• Strong undulator  u ≳ 1:

Undulator with radiation of a spectrum with several harmonics.

The wiggler is then a limiting case of the strong undulator. The distinction between these three

cases is not sharp. In practice, undulators are implemented as strong undulators, but their field

amplitude can be varied up to the range of the weak undulator. We will see that in this way the

energy of the emission lines of the undulator can be varied, i.e. the undulator can be tuned.

In addition to the types mentioned here and discussed in more detail below, other types of

insertion devices are in use:

• Wavelength shifter

A limiting case of a 3-pole wigglers with a very high field

• Helical undulator

Undulator with two phase-shifted transverse field components

→ helical trajectory

→ emission of circularly polarised radiation

• Modulated undulators

e.g. amplitude-modulated field or field amplitude linearly decreasing in I (tapered undu-

lator) for certain desired properties of the emitted radiation.
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6 The weak undulator

6.1 Qualitative approach

Before we look at the mathematical description of the properties of undulator radiation, let us

first consider a qualitative understanding of how undulators work. It should be noted that the

following ’reflection represents only one of several instructive qualitative approaches to undulator

radiation. The interested listener and reader is referred to the beautiful presentation in Hofmann

2004 for other approaches.

The weak undulator in the co-moving inertial system
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In this figure, the particle motion in the inertial system that is also moving with the particle is

considered. The reduction of the mean drift velocity in the I direction is neglected, so that the

particle motion results in a harmonic oscillation:

• Motion of the particle in the laboratory system with drift velocity V2

• Oscillation around G = 0 with frequency Ωu =
2cV2

_u

• Motion of the undulator in the moving system with −V2

• Length contraction of the period in the co-moving system _∗u = _u/W

• In the co-moving system: pure sinusoidal oscillation, radiation pattern of the Hertzian

dipole, emission at a single frequency Ω
∗
u = ΩuW

• Back-transformation into the laboratory system: forward-bundled radiation and Doppler-

shifted frequency dependent on the observation angle l1 =
Ω
∗
u

W (1−V cos o)
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6.2 Equation of motion and approximations

In order to be able to say more about the properties of the undulator radiation and the way in

which these can be determined, we now take a closer look at the weak planar harmonic undulator.

The procedure corresponds to that which we used to describe the spectral properties of normal

synchrotron radiation: setting up the equation of motion, inserting it into the radiation field term

and applying various approximations.

So, first the equation of motion of the particles for the general planar undulator is set up and

then specialised by approximation for a weak undulator field.

The coordinate system

For the description, we choose the following coordinate system:

Figure 27: Representation of the coordinates important for describing the undulator radiation

The undulator field is assumed to be parallel to the H-axis in the centre plane and periodic with

period length: _u

number of periods: #u

total length: !u = #u_u

(6.1)

The undulator field in the centre plane H = 0 is given by

®�(G, 0, I) = �0(0, cos :uI, 0) (6.2)

Two remarks:
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Remark (End fields). The undulator has a finite length !u = #u_u, so its field is not strictly

periodic. The influence of the end fields on the spectrum is neglected in our consideration. The

end fields are also important for electron beam optics with respect to the transparency of the

insertion device. Therefore, we will deal with the field termination of undulators and wigglers

again later.

Remark (Field harmonics). In reality, an undulator field is usually not purely cosinusoidal but has

higher harmonics. However, the following consideration is valid in principle for every Fourier

component of the field and can therefore be easily generalised.

Equation of motion in the undulator

The magnitude of the particle velocity is constant

E = V2. (6.3)

Initial conditions: The particle passes I = 0 at (emission) time C′ = 0. In the chosen

symmetrical field, then

I(0) = 0, ¤G(0) = 0, ¤I(0) = V2. (6.4)

Thus, no transverse component of velocity at the origin.

The equations of motion now result from the Lorentz force

®� = <W
©
«
¥G
¥H
¥I
ª®
¬
= 4(®E × ®�) = 4�0

©
«
− cos(:uI) ¤I

0

cos(:uI) ¤G
ª®
¬

(6.5)

to

¥G = −4�0

<W
cos(:uI) ¤I, ¥I = 4�0

<W
cos(:uI) ¤G. (6.6)

The equation for the G component can be integrated:

¤G = − 4�0

<W:u

sin(:uI). (6.7)

For the I component, conservation of energy yields

¤G2 + ¤I2 = V222 ⇒ ¤I = V2
√

1 − ¤G2

V222
(6.8)

The properties of the radiation are determined from the radiation term of the retarded electric

field:

®� (®A%, C) = 4

4cn0

[
1

2

®= × [(®= − ®V) × ¤®V]
(1 − ®V · ®=)3'

]
ret

(6.9)

To calculate the radiation field from the trajectory, the following approximations are made:
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• Approximation for the weak undulator: Neglect of the longitudinal oscillation component

• Far-field approximation: Observation from a large distance

• Ultrarelativistic approximation (analogous to normal synchrotron radiation)

Approximation for the weak undulator

Weak deflection means that the motion in the I direction can be approximated

¤I = V2. (6.10)

This equation can be integrated directly, yielding

G′(I) :=
dG

dI
=

¤G
¤I = − 4�0

<2VW:u

sin :uI. (6.11)

With the now exact definition of the undulator parameter

 u := VWĜ′ =
4�0

<2:u

(6.12)

we obtain for the trajectory in the weak undulator

®A (C′) =
©«
 u

VW:u
cos(ΩuC

′)
0

V2C′

ª®®¬
®V(C′) =

©«
− u

W
sin(ΩuC

′)
0

V

ª®®¬
¤®V(C′) =

©
«
 u2:uV

W
cos(ΩuC

′)
0

0

ª®®
¬

(6.13)

with

Ωu := :uV2. (6.14)

This also allows the vector from the particle to the point of observation to be specified directly:

®'(C′) = ®Ap − ®A (C′)

®'(C′) = Ap

©
«
sin o cos i −  u

ApVW:u
cos(ΩuC

′)
sin o sin i

cos o − V2C ′

Ap

ª®®¬
(6.15)

Analogous to the treatment of normal synchrotron radiation, we carried out two further

approximations. On the one hand, we again assume that the distance from the point of emission

to the observer is large compared to the length of the path on which the particle is observed

(i.e. here the length of the undulator), on the other hand we carry out the ultra-relativistic

approximation:
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Observation from a large distance

Length of the undulator:
!u

2Ap

≪ 1

Length of the observed trajectory:
!u

2Ap

≥ |V2C′ |
Ap

≪ 1,

Oscillation amplitude:
 u

ApVW:u

≪ 1

(6.16)

With this approximation, the absolute value of the distance vector '(C′) can be developed again

up to the linear term. This results in

'(C′) = Ap − V2C′ cos o −  u sin o cos i

VW:u

cos(ΩuC
′), (6.17)

and thus for the relation between the reduced observer time Cp (defined analogously to normal

synchrotron radiation) and emission time C′

Cp := C −
Ap

2
= C′ + '(C

′) − AP

2

= C′(1 − V cos o) −  u sin o cos i

V2W:u

cos(ΩuC
′).

(6.18)

The second, oscillatory term turns out to be a phase modulation with a negligibly small

amplitude and will be ignored in the following, so that a rather simple relation between reduced

observer time and emission time results.

Overall, we obtain with this approximation for the terms to be used in the expression for the

radiation field:

Cp = C′(1 − V cos o)
1 − ®= · ®V = 1 − V cos o

®= × [(®= − ®V) × ¤®V] = 2:u u cos(ΩuC
′)

2W3

©«
1 − V cos o − sin2 o cos2 i

− sin2 o sin i cos i

sin o cos i(V − cos o)
ª®¬

(6.19)

Ultrarelativistic approximation

W ≫ 1, o ≪ 1 (6.20)

ultimately leads to

1 − ®= · ®V =
1 + W2o2

2W2

®= ×
(
(®= − ®V) × ¤®V

)
=
2:u u cosΩuC

′

2W3

©«
1 − W2o2 cos 2i

−W2o2 sin 2i

0

ª®¬
(6.21)
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as well as the relation between emission time and reduced observer time

Cp =
1 + W2o2

2W2
C′ (6.22)

Accordingly, the frequency of motion Ωu for the observer is “translated” into the frequency of

the observed radiation

l1 =
2W2

1 + W2o2
Ωu =:

l10

1 + W2o2
(6.23)

with the fundamental frequency in the exact forward direction l10 = 2W2
Ωu.

Remark. Thanks to the simple relation of the time scales, the retarded fields in the case of

undulator radiation can be represented relatively easily explicitly in both time and frequency

space, in contrast to normal synchrotron radiation.

6.3 The radiation field

Inserting the approximating expressions into the radiation term of the retarded field and carrying

out the Fourier transformation of this expression for a finite undulator with #u periods leads to

®�⊥(Cp) =
(
1 − W2o2 cos 2i

−W2o2 sin 2i

)
�u

(1 + W2o2)3
cosl1Cp

®�⊥(l) =
(
1 − W2o2 cos 2i

−W2o2 sin 2i

)
�u

(1 + W2o2)3

√
c

2

#u

l1

sin
(
Δl
l1
c#u

)
Δl
l1
c#u

(6.24)

with

�u :=
4:u uW

3

cn0Ap

=
4A02�0W

3

Ap

(6.25)

and

Δl := l − l1

The “transition to an undulator of finite length” means that the electric field ®�⊥(Cp) can only be

observed within a time interval [−#uc/l1; #uc/l1], and the above expression for the electric

field in time must be multiplied by a box function over this interval.

For the transition to the frequency domain, this means that the Fourier integral is to be carried

out only over this finite interval. This finite Fourier integral over the cosine term leads to the

spectral function with a line width of Δl/l1 = 1/#u. In the limit #u → ∞, the spectral function

tends towards a delta distribution.

Remark. • �G corresponds to the horizontal or f-polarisation component with maximum

amplitude �u at o = 0

• �H corresponds to the c polarisation component. This vanishes for o = 0 and in the

horizontal (i = 0) and vertical (i = c/2) planes.



Axel Bernhard Accelerator Physics Lecture Notes 2024/2025 53

6.4 Properties of the radiation from the weak undulator

Radiated power and energy

The average power radiated by a particle in the undulator, i.e. the power averaged over one

period, is given by

%u =
A02<2

2W2:2
u 

2
u

3
, (6.26)

and from this, the energy radiated when passing through the undulator

,u =
%u!u

2
. (6.27)

The power radiated by a particle stream � thus becomes

%u� =
�,u

4
=
A0<2

2W2�:2
u 

2
u#u_u

34
(6.28)

Spectral-angular power distribution

d2%u

dΩdl
= %uW

2(�uf (o, i) + �uc (o, i)) 5# (Δl) (6.29)

with the angular distribution functions

�uf (o, i) = 3

c

(1 − W2o2 cos 2i)2

(1 + W2o2)5
, �uc (o, i) = 3

c

(W2o2 sin 2i)2

(1 + W2o2)5
(6.30)

and the spectral function

5# (Δl) =
#u

l1

(
sin(c#uΔl/l1)
c#uΔl/l1

)2

(6.31)

with ∫ ∞

−∞
5# (Δl)dl = 1 (6.32)
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Spectral function of the undulator radiation
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Spectral function of the undulator radiation for

given undulator properties #u, _u,  u ≪ 1, elec-

tron energy W and observation angle o.

The relative width of the spectral function is

1/#u.

Angular distribution

As we have just seen, the integration over all energies leads to the spectral function being

integrated to 1. The angular distribution is then given by the two angular distribution functions.

Undulator radiation: angular power distribution
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Figure 28: Power distribution of the energy-integrated undulator radiation for f and c polarisation

The variance over the opening angle is obtained in the same way as for normal synchrotron

radiation, i.e.

oRMS =
1

W
(6.33)
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However, if one looks at the angular distribution specifically for the fundamental frequency

l10 and notes that

l1 =
l10

1 + W2o2
(6.34)

there is a correlation between frequency and angular distribution, the variance over the opening

angle is obtained as

oRMS(l10) =
4
√

3c

c

1

W
√
#u

(6.35)

Spectral radiation power distribution

The sinc-shaped spectral distribution results for a single electron whose radiation is detected at

exactly one particular observation angle. In reality, there is always an electron ensemble with a

distribution of the directions of motion and a detector with a finite aperture, i.e. integration over

a finite solid angle is present. Therefore, a Doppler-broadened spectral distribution is always

observed.

To illustrate this fact, let us consider the angle-integrated spectrum of the radiated power. To

do this, the observation angle o must essentially be converted into a frequency.

For simplicity, let us consider the case #u → ∞. Then the spectral function goes into a

delta distribution and the relationship between observed frequency and observation angle is

one-to-one:

l1 =
l10

1 + W2o2
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(6.36)

This means that
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Evaluation of the integral over the angular distribution functions leads to the spectral functions

of the infinitely long undulator
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Remark. Finite number of periods: → convolution with spectral function

For undulators with a finite number of periods, this is to be convolved with the spectral function

5# (Δl). This leads in particular to a softening of the sharp edge at l10.

The strong Doppler broadening effect visible in the spectrum also occurs in a similar way

as a result of the finite emittance of the electron beam and the finite angular acceptance of the

detector.

Photon flux

Finally, a note on photon flux.

As in the case of normal synchrotron radiation, the spectral power density of the radiation can

be translated into a spectral photon flux by means of ad hoc quantisation. For an undulator of

length !u with a particle current �, this yields the mean total photon flux in an analogous way to

normal synchrotron radiation

¤=u� =
2cUf� 

2
u#u

34
(6.39)

with the fine structure constant introduced for the sake of brevity

U 5 =
42

2n02ℎ

Remark. Unlike normal synchrotron radiation, both the total radiation power and the photon

energy scale with W2. This means that the total number of photons emitted is independent of W!

The total photon flux is, however, relatively uninteresting for the experiment, since it usually

uses the monochromatic photon flux in a small solid angle around the beam axis.

A good measure for this is the photon flux density on the beam axis and at the fundamental

frequency l10:
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d2 ¤=u�

dΩdl/l

����
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UfW

2� 2
u#

2
u

4
(6.40)

This shows the intensity amplification of the undulator for the emission wavelength, i.e. under

the condition of constructive interference: The photon flux for this wavelength scales with #2
u ,

while the total photon flux scales with #u.

The advantage of the undulator over the bending magnet or the wiggler lies not only in the

high intensity at a certain wavelength, which, as we shall see in a moment, can be selected within

certain limits, but also in the low photon flux at all other wavelengths, which is mainly reflected

in heat load on the X-ray optical elements.
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