
Axel Bernhard Accelerator Physics Lecture Notes 2024/2025 58

7 Strong undulators

7.1 The trajectory in the strong undulator

Let us return to the equation of motion of the electron in the harmonic undulator field, i.e.

¥G = −
4�0

<W
cos(:uI) ¤I, ¥I =

4�0

<W
cos(:uI) ¤G,

with integration of the first equation to

¤G = −
2 u

W
sin(:uI)

and because of the conservation of energy

¤I = V2

√
1 −

 2
u

V2W2
sin2(:uI).

For the weak undulator, we assumed that the average drift velocity of the particle in the I

direction is equal to the instantaneous velocity V2, and in this approximation we obtained a

simple sinusoidal trajectory for the particle.

We now abandon this approximation.

Without this approximation, the trajectory angle as a function of I is obtained as follows

G′ =
dG

dI
=

¤G

¤I
= −

 u sin(:uI)

VW

√
1 −

 2
u

V2W2 sin2(:uI)

. (7.1)

From this, the trajectory can in principle be calculated, but the solution leads to an elliptic

integral. However, on closer inspection, it can be seen that under the condition for the extrema

of G′ (which is still valid in the ultrarelativistic case of interest here)

Ĝ′ = tank0 ≪ 1 ⇒ Ĝ′ ≈ k0 ≈
 u

VW
≪ 1 (7.2)

as well as the approximation for observation from a large distance

!u

Ap

≪ 1 (7.3)

our approximation above for the trajectory

G′(I) = −
 u

VW
sin(:uI), G(I) =

 u

:uVW
cos(:uI) (7.4)
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remains justified and can be approximated for motion in the I direction

dI

dC′
≈ V2

(
1 −

 2
u

2V2W2
sin2(:uI)

)

⇔ V2dC′ =
dI(

1 −
 2

u

2V2W2 sin2(:uI)
) (7.5)

Here we have developed the root to the second member.

In our equation, ¤I is a function of I. To get to I(C′) or ¤I(C′), we first have to integrate:

V2

∫ C ′

0

dC′′ =

∫ I (C ′ )

0

1

1 −
 2

u

2V2W2 sin2(:uI′)
dI′ (7.6)

and differentiate again with respect to C′ for ¤I(C′). If we do this and also express the G

component of the trajectory as a function of the emission time C′, we obtain the equations of

motion

¤G(C′) = −
2 u

W
sin(ΩuC

′), ¤I(C′) = V∗2 +
2 2

u

4V2W2
cos(2ΩuC

′)

G(C′) =
 u

VW:u

cos(ΩuC
′), I(C′) = V∗2C′ +

 2
u

8V2W2:u

sin(2ΩuC
′).

(7.7)

The motion in the I-direction now consists of a uniform drift with the average drift velocity

V∗2 = V2

(
1 −

 2
u

4V2W2

)
< V2 (7.8)

with an oscillatory modulation with the frequency and amplitude

2Ωu = 2:uV
∗2, ¤̂I =

 2
u

4V2W2
V2 (7.9)

According to the reduced mean speed, the Lorentz factor is also reduced:

W∗ =
1√

1 − V∗2
≈

W√
1 +

 2
u

2

< W. (7.10)

For illustration purposes, we will show the particle motion in the system that is moved along

with V∗2. The Lorentz transformation into this system leads to the aforementioned 8-shaped

motion with oscillation components in both the G and I directions:

G∗(C) =
 ∗

u

VW∗:u

cos(Ω∗
uC), I∗(C) =

( ∗
u)

2

8V2W∗:u

sin(2Ω∗
uC) (7.11)
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with

Ω
∗
u = W∗:uV

∗2 (7.12)

and the modified undulator parameter

 ∗
u :=

 u√
1 +

 2
u

2

≈ k0W
∗. (7.13)
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Figure 29: Trajectory of the particle in the co-moving inertial system  ∗. The calculation was based on

the parameters of SCU14 at ANKA: _u = 14 mm, W = 4900.

Now the terms of the distance vector between particle and observer, the velocity and the

acceleration that go into the calculation of the radiation field can be set up again:

7.2 The radiation of the strong undulator

The radiation field of the strong undulator can be calculated in a similar way to that for the weak

undulator or normal synchrotron radiation from the trajectory of the particle and the relation of the

time scales, which are completely contained in the established equations of motion. Explicitly,

these are

®A (C′) =
©«

 u

VW:u
cosΩuC

′

0

V∗2C′ +
 2

u

8V2W2:u
sin 2ΩuC

′

ª®®¬
®V(C′) =

©
«

− u

W
sinΩuC

′

0

V∗ +
 2

u

4VW2 cos 2ΩuC
′

ª®®
¬

¤®V(C′) =
©
«

−
V2:u u

cos
ΩuC

′

0

−
 2

u :u2

2W2 sin 2ΩuC
′

ª®®
¬

.

(7.14)
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With
®' = ®A? − ®A

and the retardation condition, the following results for the relation of the time scales (formulated

for the reduced observer time):

Cp = C′ +
'(C′) − Ap

2

=
1

l1

(ΩuC
′ − 1u cosΩuC

′ − 0u sin 2ΩuC
′)

(7.15)

with

l1 =
2W∗2

Ωu

1 + W∗2o2
(7.16)

the fundamental frequency of the radiation field as a function of the viewing angle o and the

amplitudes of the oscillatory terms

0u =
 ∗2

u

4(1 + W∗2o2)
, 1u =

2 ∗
uW

∗o cos i

1 + W∗2o2
. (7.17)

The first crucial finding is already contained in equation 7.16: Reducing the average drift velocity

f’ leads to a reduction in the fundamental frequency. Transforming equation 7.16 according to

the original characteristic quantities for electron energy and undulator results in the undulator

equation

l1 =
4c2W2

_u(1 +
 2

u

2
+ W2o2)

⇔ _1 =
_u

2W2

(
1 +

 2
u

2
+ W2o2

)
(7.18)

The substitution of the equation of motion into the radiation term is analogous to the previously

treated cases of normal synchrotron radiation and weak undulators and will not be explicitly

repeated here. The crucial difference to the previously treated cases is that we are now dealing

with a complex periodic motion, i.e. the radiation field is periodic but cannot be described by

a pure sine. The ’transition to the frequency domain in this case is therefore done via a Fourier

series expansion:

®� (Cp) =

∞∑
ℎ=−∞

®�ℎe
iℎl1Cp with ®�ℎ =

1

)p

∫ )p

0

®� (Cp)e
−iℎl1CpdCp (7.19)

where )p =
2c
l1

is the period of the radiation field.

Our radiation field is now represented by a series of harmonic Fourier components at the  u-

and o-dependent fundamental frequency l1.

We will not go into the Fourier integrals after substituting the equations of motion into the

series expansion of the radiation field here (those interested are referred to A. Hofmann, The

Physics of Synchrotron Radiation).
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We now move directly on to the resulting spectral and angular distribution of the radiation

power. This is obtained as the sum of the contributions for the harmonics

d2%ℎ

dΩdl
= %uW

∗2 [�ℎf (o, i) + �ℎc (o, i)] 5# (Δlℎ) (7.20)

with the total radiant power

%u =
2A02

342⟨�2⟩,2
4

3(<22)3
(7.21)

as in the case of the weak undulator, the angular distribution functions

�ℎf (o, i) =
3ℎ2

c(1 +  2
u/2) 

∗2
u

(2Σℎ1W
∗o cos i − Σℎ2 

∗
u)

2

(1 + W∗2o2)3

�ℎc (o, i) =
3ℎ2

c(1 +  2
u/2) 

∗
u

2

(2Σℎ1W
∗o sin i)2

(1 + W∗2o2)3
,

(7.22)

which are the series ’via the Bessel functions

Σℎ1 :=

∞∑
;=−∞

�; (ℎ0u)�ℎ+2; (ℎ1u)

Σℎ2 :=

∞∑
;=−∞

�; (ℎ0u)�ℎ+2;+1(ℎ1u) + �; (ℎ0u)�ℎ+2;−1(ℎ1u),

(7.23)

.

The spectral functions are analogous to the weak undulator

5# (Δlℎ) =
#u

l1

©
«
sin

(
Δlℎ

l1
c#u

)
Δlℎ

l1
c#u

ª®®
¬

2

(7.24)

with

lℎ = ℎl1,
Δlℎ

l1

=
l − ℎl1

l1

(7.25)

The following tables show the spectrally integrated angular distribution functions and the

angle-integrated spectra of the first three harmonics of the radiation from the strong undulator.

As with the weak undulator, the angle dependence of the observed frequency leads to Doppler-

broadened spectral distributions with the respective cutoff frequency lℎ. The spectra shown are

those of an infinitely long strong undulator.
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Angular distribution of the radiation power
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The following applies to the angular distributions:

• Odd harmonic, f polarisation: maximum on the undulator axis, ℎ − 1 node lines perpen-

dicular to the G axis

• Odd harmonic, c polarisation: node lines at G = 0, H = 0 and ℎ−1 node lines perpendicular

to the G axis

• even harmonic, f polarisation: nodal line at G = 0, ℎ − 2 nodal lines perpendicular to the

G-axis

• even harmonic, c polarisation: nodal line at H = 0 and ℎ nodal lines perpendicular to the

G-axis

As in the case of the weak undulator, the spectral-angular photon flux density (which is

particularly important for the application) can be specified for the strong undulator for each

harmonic on the beam axis (o = 0) and at the respective central frequency l = lℎ0 = ℎl10 at

an electron current �. This results in:

d2 ¤=ℎ�

dΩdl/lℎ
=
U 5 ℎ

3W2� 2
u#

2
u

4(1 +  2
u/2)

2

[
�(ℎ−1)/2

(
ℎ
 ∗

u
2

4

)
− �(ℎ+1)/2

(
ℎ
 ∗

u
2

4

)]2

(7.26)

This expression can now be used to calculate the undulator tuning curves, i.e. the plot of the

flux ’over the photon energy, which for a given W, _u and  u results from the undulator equation

7.18.
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Undulator spectra and tuning
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• the undulator spectrum can be changed by

varying  u =
4

2c<2
�0_u

•  u = 0.3: virtually harmonic motion →

single line spectrum

•  u = 1.0: higher harmonics appear, in-

tensity increases (power ∝ �2
0
), lines are

shifted to longer wavelengths (lower ener-

gies)

•  u = 2.3: tuning ranges of 1st and 3rd

harmonic overlap
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Finally, let us look at some examples:

Undulator Tuning Curves: Examples
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Figure 30: Tuning curves of undulators: ANKA superconducting undulator, Diamond cooled undulator,

ESRF in-vacuum undulator

Undulator spectra for K=2
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Figure 31: Undulator spectra for  D = 2 in linear representation for the same sources

Remark. The wiggler can be treated as a very strong undulator with  u so large and #u so small

that the spacing of the harmonics becomes smaller than the width of the spectral function. Result:

quasicontinuous spectrum.
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