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3 Multipole magnets

3.1 Basis: cylindrical multipole expansion

Assuming that there are no field sources in the vicinity of the beam, the following applies:

rot ®� = 0

⇒ ∃ scalar potentialΦwith ®� = − gradΦ

For this potential, the Laplace equation applies

ΔΦ ≡ 0 (3.1)

For electron beam dynamics, only solutions of the Laplace equation that are cylindrically

symmetric around the beam axis are of interest.

Explicitly written in cylindrical coordinates, the Laplace equation is
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In a first approximation, the magnetic grid is represented by piecewise solutions of the Laplace

equation in B constant solutions. This is the so-called hard-edge approximation.

Usually, for the description of beam-steering magnets, the transverse coordinates and thus also

the potentials and field components in the transverse direction are written as complex numbers.

The Laplace equation is fulfilled in this notation by piecewise in B constant potentials in the

form of a Taylor expansion around the reference orbit A = 0 (multipole expansion)
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(The reader can convince himself of this by substituting into the Laplace equation).

The real and imaginary parts of these potentials represent two linearly independent solutions

of the Laplace equation

Re(Φ=), Im(Φ=).
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The imaginary solutions of the Laplace equation have the property

Im(Φ=) (G, H) = −Im(Φ=) (G,−H) ⇒ �=H (G, H) = �=H (G,−H)

i.e. they exhibit mirror symmetry with respect to the midplane. These multipoles are referred to

as perpendicularly oriented multipoles.

In contrast, the real solutions represent the rotated multipoles.

The rotated multipoles of order = are rotated by c
2=

around the beam axis.

Remark. The rotated multipoles cause a coupling between the dynamics in the G and H directions.

The perpendicular ones do not do this, at least for particles in the centre planes. In optics

consisting of perpendicular dipoles and quadrupoles, the dynamics in the G and H directions are

even completely decoupled. Therefore, beam transport systems are usually built (mainly) from

perpendicular magnets.

3.2 Iron-dominated multipole magnets

The basic two-dimensional (transverse) design of iron-dominated multipole magnets is based

on the fact that the field lines of the magnetic flux density on the surface of highly permeable

pole materials are perpendicular, and the sections of the pole surfaces with the G − H plane are

therefore equipotential lines of the scalar magnetic potential.

Pole shapes of pure multipole magnets

Figure 8: Pole shapes for iron-dominated magnets

of the first three multipole orders, vertical and ro-

tated. (Fig.: A. Wolski in Brandt 2010)

The field strength of a multipole magnet as a function of the number of Ampère-turns can be

determined by applying Ampéres law
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Figure 9: Integration path for determining the multipole strengths (Fig: A. Wolski in Brandt 2010)
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with the result for

a dipole: �H =
`0#�

6

a quadrupole:
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(3.7)

with the gap height of the dipole 6 and the pole radius of the quadrupole A0, respectively.

This can be generalised for arbitrary multipoles of order = to

�H + i�G =
`0=#�

A0

(

G + iH

A0

)

(3.8)

Types of dipole magnets

Figure 10: Typical designs for dipole magnets: C-magnet, H-magnet and window-frame designs (Fig.:

Th. Zickler in Brandt 2010)



Axel Bernhard Accelerator Physics Lecture Notes 2024/2025 24

Types of quadrupole magnets

Figure 11: Typical designs for quadrupole magnets (Fig: Th. Zickler in Brandt 2010)

A practical example: design of the dipoles for the FLUTE bunch compressor .

A practical example: dipoles for the FLUTE bunch compressor

Basic target parameters and specifications

electron energy MeV 40–50

deflection angle (0-15)◦

magnet pole shape rectangular

magnet type H, movable

magnet length (geometric) mm 200

max. magn. flux density mT 220

good field width (|Δ�H/�H0 | ≤ 10−4) mm 74,6 (optimisation for 80)

gap width mm 45

Ampère-Turns 7878

current density A mm−2 1
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2D design

Parameterised model

• quadratic coil cross section

7878 mm2

• pole shape avoiding flux density

peaks at edges

• 3-bump shims reducing required

pole overhang

2D design detail: shim geometry

'1,U1

'2,U2

'3,U3

V

Optimisation

• Fixed parameters: flat pole width,p, pole

angle V

• Free parameters: bump radii '1, '2, '3,

bump angles U1,U2

• minimize " =
|�H−�H (0,0) |

�H (0,0) for (G, H) in

region G ∈ [−40 mm; 40 mm],

H ∈ [0; 10.5 mm]

• success criterion: " ≤ 1 × 10−4
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2D design: optimisation results
Successful minimisation

fixed

,? 100 mm

V 10◦

optimised

'1 10.14 mm

U1 12.25◦

'2 11.69 mm

U2 46.10◦

'3 5.11 mm

resulting

�H (0, 0) 218 mT

3D design
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3D design: Fringe field optimisation
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• start with simple chamfer at pole end

• calculate !eff (G) in desired good-field

range plus overhang: (0-50) mm



Axel Bernhard Accelerator Physics Lecture Notes 2024/2025 28

3D design: Fringe field optimisation
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• start with simple chamfer at pole end

• calculate !eff (G) in desired good-field

range plus overhang: (0-50) mm

• introduce G-dependent chamfer with depth

ΔI = 2 · (!eff(G) − !eff(Gmax))

• iterate to find 2 with minimum variation of

!eff over good-field range (here, 2 = 1.4)
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3D design: Fringe field optimisation
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Conclusion

• relative variation of !eff can be pushed

below 0.1 % for a large part of the desired

good-field region

• however, !eff rapidly drops for G > 35 mm

• flat pole width seems to small

• complete optimisation procedure repeated

for 55 mm flat pole width

Electric Power

The electric power dissipated in the magnet coils is

% = �2dCu+Cu

=
1

�Cu/�eng

�2
engdCu+eng.

�Cu/�eng depends on the choice of the conductor and takes into account insulation, packing

factor and cross section of water cooling channels.

A reasonable lower limit of this factor can be estimated for both, water and air-cooled coils:

�Cu

�eng

≥ 0.65 (3.9)

Result:

Magnet length 200 mm 150 mm

Power per coil 101 W 91 W

3.3 Coil-dominated multipole magnets

The fields of coil-dominated magnets result from the arrangement of the current-carrying ele-

ments with Ampères law or Biot-Savart.

We approach the coil-dominated pure multipole magnets via the rather academic model of a

distribution of axis-parallel currents on a cylindrical surface.
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Figure 12: Coordinate system in the complex plane for describing the current distribution and the magnetic

field of a coil-dominated magnet (Fig: A. Wolski in Brandt 2010)

Cylindrical surface with a cylinder radius A0. Current distribution on the cylindrical surface

of the form

� (\0) = �0 cos(=0\0 − q) (3.10)

⇒ �H + i�G = −
�0

2c`0A0

(

A

A0

)=0−1

ei(=0−1) \ce−iq, (3.11)

i.e. a cosinusoidal current distribution produces a pure multipole.



Axel Bernhard Accelerator Physics Lecture Notes 2024/2025 31

Multipole due to cosinusoidal current distribution

Figure 13: Ideal azimuthal current distribution and

field lines of the resulting field distribution for

the first three multipole orders (Fig: A. Wolski in

Brandt 2010)

Real coil geometries approach this current dis-

tribution.

A current distribution on a cylinder is of course not feasible in reality. Instead, a corresponding

current distribution must be realised using coils with constant current density. Such arrangements

can be approximated with another model, the intersection of two conductors with elliptical cross-

sectional area (half-axes 08 and 18 , 8 = 1, 2, centred at ±G0) and the same current density � of

opposite sign:

Inside such conductors,

�G8 = ∓`0�
08

08 + 18
H, �H8 = ±`0�

18

08 + 18
(G ± G0) (3.12)

Field in the interface:

Case 1: 01 = 02 = 0, 11 = 12 = 1, G0 = 2/2:
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- +

�G = 0, �H = `0�2
1

0 + 1
= 2>=BC. (3.13)

Dipole

Case 2: 01 = 12 = 0, 02 = 11 = 1, G0 = 0:

+ +

-

-

�G = `0�
1 − 0

1 + 0
H, �H = `0�

1 − 0

1 + 0
G (3.14)

Quadrupole

Real coil geometries approximate these model distributions.

Coil block geometries for coil-dominated dipoles

Figure 14: Cross-section of a cos o dipole (Fig.: Charlie Sanabria, CC-BY-4.0 Sanabria 2017)
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3D arrangement of cosine-theta coils

Figure 15: Principle of the end coil design of coil-dominated magnets (Fig.: Charlie Sanabria, CC-BY-

4.0 Sanabria 2017)

The fields that can be achieved with coil-dominated magnets scale with the achievable cur-

rent density. Since this is 400 (air-cooled coils) to 100 times (water-cooled coils) higher for

superconducting magnets than for normal conductors, coil-dominated magnets are the domain

of superconductivity.

Remark. For the dipole case, it is instructive to rearrange the equation and relate it to the critical

current density or the critical field �22:

� = `0_3 (�22 − �)2
1

0 + 1
(3.15)

with _ the filling factor and 3 = − d�2
d�

�

�

�

�22

.

On the one hand, it can be said that the achievable field strength scales with the coil thickness

2 and the critical current density. The rearranged equation also shows: for � → �22 2 → ∞

must be aimed for. Consequently, the key to higher fields lies in increasing �22.
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Examples

source: Taking a Closer Look at LHC - Magnetic Dipoles 2020

Tevatron: 4 T HERA 6 T SSC 6.6 T LHC 8.65 T HiLumi upgrade: 11 T FCC: 16 T

LHC dipole: two neighbouring beam pipes

source: Taking a Closer Look at LHC - Magnetic Dipoles

2020

• 2 pairs of coils, each with 80 Rutherford

cables with 6500 filaments each

• with 1232 dipoles per 15 m in length, that

adds up to 1.4×1012 m of superconducting

filaments

• transport current per cable: 11.8 kA

• magnetic force on each coil: 2×106 N m−1

• field energy per dipole: 7 MJ
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LHC-Dipole: cryo module

source: Brice 2011
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