



## **Particle Accelerator Physics**

#### Anke-Susanne Müller, Axel Bernhard, Bastian Härer, Bennet Krasch, Nathan Ray



#### KIT – The Research University in the Helmholtz Association

#### www.kit.edu

### **KIT** accelerators: **FLUTE**





#### Ferninfrarot-Linac-und-Test-Experiment

- Linac-based test facility
- Energy: 42 MeV



### **KIT** accelerators: **KARA**





### **Future KIT accelerators**







#### laser plasma accelerator









7

nd Technology (IBPT)









https://publikationen.bibliothek.kit.edu/1000170555







**KIT**TEN (

https://publikationen.bibliothek.kit.edu/1000170555



Source: home.cern/about/updates/2017/04/ancient-particle-accelerator-discovered-mars

### **Organizational information**



- Modular course with integrated tutorials
   6 ECTS, Tue 8:00-9:30 h, Fr 9:45-11:15 h
- Certificate of achievement
  - Exercise sheets (6x): 50% in total, 30% of each sheet
     Short presentation, case study
- Practical exercises (equivalent of 2 ECTS)
  - after the end of the semester
  - 1 day simulation practical
  - 1 day practical at the storage ring KARA
- Visit of the KIT accelerators (KARA, FLUTE): Date by arrangement
- Possible combinations for physics major and second major subject
   Condensed Matter, Experimental Particle Physics and Astroparticle Physics, (Optics and Photonics)



#### Literature



#### Text books:

- K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, Teubner Studienbücher, 2. Auflage, 1996. bzw.: The physics of particle accelerators, Oxford University Press, 2005.
- E.J.N. Wilson, An Introduction to Particle Accelerators, Oxford University Press, 2001.
- H. Wiedemann, Particle Accelerator Physics, Springer-Verlag, 4th edition, 2015. directory of open access books: <u>https://directory.doabooks.org/handle/20.500.12854/27959</u>
- P.J. Bryant, K. Johnsen, *The Principles of Circular Accelerators and Storage Rings*, Cambridge University Press, 1993.
- J.D. Jackson, Klassische Elektrodynamik, De Gruyter Studium, 2014.

#### CERN Yellow Reports & CAS Proceedings: <u>https://cas.web.cern.ch/previous-schools</u>

- Introduction to Accelerator Physics, Jyvaskyla, Finland, 1992, <u>CERN-94-01-V-1</u>, <u>CERN-94-01-V-2</u>
- Advanced Accelerator Physics, Zeuthen, Germany, 2003, CERN-2006-002
- Advanced Accelerator Physics, Trondheim, Norway, 2013, <u>CERN-2014-009</u>

#### Image archives:

- CERN photo database: https://cds.cern.ch/collection/Photos?In=de
- KIT Bibliothek, former Forschungszentrum Karlsruhe

The illustrations in this lecture are mostly taken from the sources mentioned above.



- Basic types of accelerators and their applications
- Physics of synchrotron radiation, wigglers and undulators
- Beam optics and beam dynamics
- Magnet technology for accelerators and synchrotron radiation sources
- Measurement and control of beam parameters
- Free-electron lasers
- Performance limits of accelerators
- New technologies, current & future projects

### I - Types of particle accelerators

#### Application of accelerators

Electrostatic accelerators
 Cockcroft-Walton, Van-de-Graaff, …

Linear accelerators (linacs)

Circular accelerators
 Betatron
 Cyclotron
 Microtron
 Synchrotron
 Storage rings & colliders

**Sarlsruhe Institute of Technology** 

### Einsatzgebiete von Beschleunigern



#### Forschung

### Kosmische Strahlen

Synchrotronstrahlung



# Accelerators of the world

Only a small fraction of the world's accelerators serve solely science.

Most of the systems are used in industry and medicine.





## ENV SION

European NoVel Imaging Systems for ION therapy

1ttps://videos.cern.ch/record/1611721



### Nonlinear multi-particle dynamics in external fields



#### *or The other reasons we do accelerator physics*

### Why we study physics with an accelerator



.... apart from photon science and particle physics:

Controlled test environment for fundamental physics offering

- Extremely high electric fields (up to GV/m)
- Short-duration excitiation with definable pulse shapes
- Multi-photon processes
- Nonlinear and ultrafast science
- Transient phenomena



... from atomic to macrosopic scale.

## Karlsruhe Institute of Technology

#### Linear accelerators (Linacs)



Reference: https://cds.cern.ch/record/39283



Reference: https://cds.cern.ch/record/2260707

#### Large-scale synchrotrons









David L. Judd and Ron MacKenzie: https://people.nscl.msu.edu/~lund/msu/phy905\_2018/lec\_lund/judd\_cartoon.pdf,



The cyclotron, as seen by...



... the theoretical physicist.



The cyclotron, as seen by...



#### ... the operator.



The cyclotron, as seen by...



... the experimental physicist.



The cyclotron, as seen by...



#### ... the visitor.



The cyclotron, as seen by... ... the student.



### II - Synchrotron radiation, wigglers & undulators

- Electrodynamics of moving point charges
   Radiant charges
   Energy loss
- Properties of normal synchrotron and undulator radiation
   Synchrotron radiation spectrum
   Angular distribution



#### **Impact of Brilliance**





Institute for Beam Physics and Technology (IBPT)

Accelerator Physics WS 23/24 — Particle Accelerator Types-1





### III - Beam optics & beam dynamics

Basics of transverse beam optics Magnetic lenses Equations of motion and transfer matrices Optic functions and emittance Tune, chromaticity and resonances Dispersion and beam size

Basics of longitudinal beam dynamics Longitudinal oscillations RF buckets and stable phase

Oscillations and damping Many-particle systems





#### Accelerators are precision instruments





#### They are tuned

![](_page_31_Picture_4.jpeg)

![](_page_32_Picture_0.jpeg)

### **IV - Magnet technology**

- Accelerator magnets
  - Requirements and specification
  - Higher orders
    - Errors and corrections

Special magnets for synchrotron radiation sources
 Wigglers
 Undulators
 ...

![](_page_33_Picture_0.jpeg)

#### **Magnet technology**

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

**Bildquelle: APS** 

![](_page_33_Picture_5.jpeg)

![](_page_34_Picture_0.jpeg)

#### V - Measurement and control of beam parameters

Beta functions and dispersion
 Gradient variation / response matrix

All around the betatron tune
 FFT & LNP
 Results from multi-turn measurements
 Phasen space reconstruction

Beam energy
 Transverse polarisation
 Resonant spin depolarisation
 LEP and external effects

![](_page_35_Picture_0.jpeg)

#### **Measurements in phase space**

![](_page_35_Figure_2.jpeg)

![](_page_36_Picture_0.jpeg)

#### Phase space tomography

![](_page_36_Figure_2.jpeg)

electro-optic spectral decoding
 bunch profile measurement
 single-bunch @ 2.7 MHz

3 16 0 -8 -16 4 26.00 26.50 27.00 27.50 t (ms) Complete phase space image reconstructed from time interval of 61 µm

Δt (ps)

![](_page_37_Picture_0.jpeg)

#### Phase space tomography

![](_page_37_Figure_2.jpeg)

electro-optic spectral decoding
 bunch profile measurement
 single-bunch @ 2.7 MHz

![](_page_37_Picture_4.jpeg)

#### **VI - Free-electron lasers (FELs)**

![](_page_38_Picture_1.jpeg)

FEL: Application of
 Iongitudinal beam dynamics
 undulators
 synchrotron radiation

Examples
 European XFEL
 SwissFEL

![](_page_38_Picture_4.jpeg)

![](_page_39_Picture_0.jpeg)

#### **Free electron lasers**

![](_page_39_Figure_2.jpeg)

![](_page_39_Figure_3.jpeg)

![](_page_40_Picture_0.jpeg)

### **VII - Performance limits of accelerators**

#### Circular accelerators

Impedance
 Tune and beam current
 Synchrotron tune in extreme cases
 Head-tail effects

Electrons

Ultra-short pulses & CSR

#### Protons

high-intense beams

Beam-beam effects (in case of colliders)

### THz radiation in a storage ring

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_2.jpeg)

## Short electron bunches emit coherent radiation

- Broadband emission
- Enormous increase of radiation in the THz range
- High brilliance

![](_page_41_Figure_7.jpeg)

### THz pulses in material

![](_page_42_Picture_1.jpeg)

#### Human stem cell manipulation

![](_page_42_Figure_3.jpeg)

#### Terahertz pulse-altered gene networks in human induced pluripotent stem cells

#### Takehir o Tachizaki,<sup>1,2</sup> <sup>©</sup> Reiko Sakaguchi,<sup>2,3</sup> Shiho Ter ada,<sup>2</sup> Ken-Ichir o Kamei,<sup>2,\*</sup> <sup>©</sup> AND Hideki Hir or i<sup>2,4</sup> <sup>©</sup>

<sup>1</sup>Department of Optical and Imaging Science & Technology, School of Engineering, Tokal University, Kanagawa 259-1292, Japan <sup>1</sup>Institute for integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan <sup>1</sup>Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan <sup>1</sup>Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan

#### Spectroscopy of quantum materials

| Time scale 1 ns                                    | 100 ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 ps            | 1 ps                 | 100 fs                | 10 fs            | 1 fs       |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-----------------------|------------------|------------|--|
| 212                                                | Cyclotron resonance and Landau level transitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                      |                       |                  |            |  |
| (including Graphene)                               | 2D ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectrons: plasmon | 15                   |                       | SOC              |            |  |
|                                                    | and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Andrew -       | 2DEG: E <sub>F</sub> | and the second second |                  |            |  |
|                                                    | Cyclotron resonance and Landau level transitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                      |                       |                  |            |  |
| Topological materials                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rude scattering  |                      |                       | SOC              |            |  |
| a design of                                        | Bulk gap of TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                      |                       |                  |            |  |
| Correlated metals                                  | Zeeman Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                      |                       | Polarons         |            |  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carrie           | er life time         |                       | Inter-band t     | cansitions |  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Localization         | peak                  |                  | _          |  |
| Magnatic matarials                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AF resonan       | ce                   |                       |                  |            |  |
| Magnetic materials                                 | FM re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sonance gap      |                      |                       |                  | -          |  |
| Hanny formion                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Ну                   | bridization gap       |                  |            |  |
| rieavy termion                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heavy fe         | ermion plasma        | 1                     |                  |            |  |
| Superconductors                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Superc           | onducting gap        |                       | Drude plasma     |            |  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Josephson pl     | asmon Pset           | ido gap in Cupra      | ites             |            |  |
|                                                    | Vortex reson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ances            | Sci                  | attering rate (T>     | T <sub>c</sub> ) |            |  |
|                                                    | Scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $rate(T < T_c)$  |                      | Phonons               | Charge tra       | insfer gap |  |
| Frequency 1 GHz                                    | 10 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,1 THz          | J THZ                | 10 THz                | 100 THz          | 1 PH       |  |
| CONTRACTOR AND | and the second se |                  |                      |                       |                  |            |  |
|                                                    | Microwave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | THz                  |                       | IR Vis           | ible UV    |  |

#### THz spectroscopy of quantum materials Eur. Phys. J. Spec. Top. (2021) 230:4113–4139

#### Institute for Beam Physics and Technology (IBPT)

#### **Collision of two beams**

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

Two beams in the collider must always be separated except in IP.
collision angle
additional tune shift
larger aperture required
coupling
resonances
reduced cross section

![](_page_44_Picture_0.jpeg)

### VIII - New technologies, current & future projects

- Examples of current and future projects
   LHC and HL-LHC
   Linear colliders: CLIC & ILC
   European XFEL
   FCC
   Muon Collider
   (FFAGs)
  - New technologies
     Plasma-based acceleration
     Dielectric accelerators

#### Future Circular Collider (FCC)

![](_page_45_Figure_1.jpeg)

Quelle: Jörg Wenniger

SPS

### Future projects, new technologies

![](_page_46_Picture_1.jpeg)

![](_page_46_Figure_2.jpeg)

### New technologies and more

![](_page_47_Picture_1.jpeg)

![](_page_47_Picture_2.jpeg)

KIT conductors, magnets & cryogenics

![](_page_47_Picture_5.jpeg)

FCC needs 4 x more dipoles with twice the field than LHC. High temperature superconductors for ever higher beam energies and for the energy transition.

#### More challenges

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

The energy within the beam is only a small fraction of the total power going into the accelerators system.

Increasingly complex grid requires new approaches.

# Accelerators of the world

A large fraction of the world's accelerators serves a medical purpose.

Most of those systems enable MV photon therapy to treat cancer.

![](_page_49_Figure_3.jpeg)

### Accelerators enable radiotherapy

![](_page_50_Picture_1.jpeg)

Radiotherapy is a cornerstone of cancer treatment.

#### The availability is insufficient.

## Today's machines are costly, not scalable and cannot meet the future demand.

Data from https://dirac.iaea.org

#### Shrinking particle accelerators...

![](_page_51_Picture_1.jpeg)

#### **Benefits**

Vision

![](_page_51_Picture_3.jpeg)

Affordable, accessible, and gentle radiotherapy

#### Approach

Novel sub-millimeter light-driven accelerators...

![](_page_51_Picture_7.jpeg)

accelerator

![](_page_51_Picture_9.jpeg)

fibei tumor localized irradiation

light driver

...instead of collateral tissue damage

![](_page_51_Picture_12.jpeg)

![](_page_51_Picture_13.jpeg)

external irradiation through body tissue