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lll - Beam optics & beam dynamics

@ Basics of transverse beam optics
@ Magnetic lenses
® Equations of motion and transfer matrices
® Optic functions and emittance
® Tune, chromaticity and resonances
@ Dispersion and beam size

® Basics of longitudinal beam dynamics
® Longitudinal oscillations
@ RF buckets and stable phase

® Oscillations and damping
@ Many-particle systems
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Basics of beam dynamics

@ A bunch typically consists of some 10° particles.

@ Different processes (synchrotron radiation, scattering at residual gas molecules, ...) lead to a
distribution of beam energy around the nominal energy.

@ Without focusing, the vacuum chambers would have to be large requiring extremely strong
magnets.

®@ Electric and magnetic fields are used to steer and focus the particle beams:
F=qg(E+7VXxB)
#@ At relativistic velocities E and B have the same effect if
E=cB
- B=1TV & E=3x103V/m X
@ Right-handed orthogonal coordinate system
Simplification: v = (0,0,v,) and B = (B,, B,,0)

Frenet-Serret coordinate system
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Magnetic fields along the beam trajectory ﬁ(".

@ For highly relativistic particles follows from equality of Lorentz and Centripetal Force

1 e B ( ) ec B ( )
- _ = - VX,y,S = R VX,y,S
px,,s) P pE
@ Taylor expansion of the magnetic field in the vicinity of the nominal trajectory (x = 0):
dB, | d°B, , 1 d’B, X
B(x) = By+—— x+— — X"+ —— x"+ ...
) Y07 dx 2! dx? 31 dx3
@ This immediately leads to
e e e dB, 1 e dsz 5 1 e d3B\~ )
— B(x) = — B + — —x + — — — X + — — i A
p p p dx 2! p dx? 3! p dx3
1 1 ) 1 s
= — + k x + —mx + —ox’ + ...
p 2! 3!
= dipole + quadrupole + sextupole + octupole + ...

@ Structures that only consist of dipole and quadrupole fields are called “linear lattices”. The linear lattice determines
trajectory (“orbit”) and focusing properties, higher-order field components are used for correction and error compensation.
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Dipole

@ The magnetic field is calculated by

4}?1}13 = hHy+IH, = nl

|
Hy
® For 1, > 1 the field of a dipole magnet is
ol

® With radius p the dipole strength is

| S e By[T]
—[m™] = —B;, = 0.2998 ——.
p p plGeV/c]
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Dipol — edge field ﬂ(".

® The magnetic field decreases m 2
atthe edge. R, m
P

@ The useful field region can
be increased by partial

compensation of the edge ‘

f|e|d . % useful field region i AT useful field region :

= Fit so-called “shims” to — —
the edge of the poles. I .................. RN 1\
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Quadrupole

@ The quadrupole field increases linearly with transverse distance from
the magnet center:

B(y)=- 238"y
B(x)=—- g-x

@ |s ] the current in n windings of the coils and R the distance of the
poles to the magnet center, a perfectly formed pole has the gradient

0B, 0B 2uonl

—_— —_— = x::
g_ax oy s R?

#@ Definition of a normalized quadrupole strength in analogy of the

deflection strength 1/p of a dipole magnet:

e
k=—¢g
%
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Quadrupole gradient

@ Like the dipole strength, the field gradient is determined from the relationship of
field integral and current in the coil windings: ‘

(J;ﬁm = nl y

@ The integral from | via Il to Il may be broken up as follows:
1 1l 1

Hds = Jﬁ@@ Jﬁm# jﬁa’
I 11 111

@ The second and third term vanish:
111 /

HEE =0 because ., >1 and J Hds =0 because H L ds

e > 1

L

1 i
® The field between the poles is determined by B, = — gy and B, = — gx. From this follows that I

H=Bluy, =—(8/uy) X 4y? =— (g/ug) r
1
g R

R
® Integration up to the pole radius R: nl = JHds = ——J‘rds = — g =
o 2 R?
0

1

Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 1 Institute for Beam Physics and Technology (IBPT)



Quadrupole “focal length” ﬂ(".

@ In analogy to the dipole magnet, the normalized
quadrupole gradient can be written as

T/
Km=2] = 0.299g _SLL/ml
plGeV/c]

@ The deflection (“kick”) of a particle passing through a
quadrupole of length [ with offset x is

dx
Ax' = A<—> = kix.

ds
® The focal length f of a quadrupole of length [ is given by
1
— =—-k L
f .
@ In the case of f > [, we speak of thin lenses, no matter KARA quadrupole

how large [ actually is.
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Synchrotron radiation in quadrupoles A\‘(IT
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:
y®
@ A particle undergoes a deflection in the |
quadrupole: again synchrotron radiation occurs! S : N
@ Since the quadrupole field increases linearly with *
the particle offset, the energy loss is also positon 4"_ ______ .
dependent. o X

@ The ensemble of particles has an average energy
loss, which can be calculated from beam size and N
position.
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Synchrotron radiation in quadrupoles i ﬁ(".

C‘ E4

T . 14
#@ The transverse radiation power is Py =5-C —.
P

@ The quadrupole field is B, = k,—)p yand B, = k—p X, respectively.
cC
@ Thus the bending radius inside the quadrupole is 1/p = k u and P, = 2—7: E* k2 u?foru = (x,y).
@ Integration over the time of flight in the quadrupole field provides the energy loss:
c C
All' : l

C 1
® For a bunch with Gaussian-distributed charge density is AE, = —— k” E4Jdu

27 2r o,

® Substitutions: &2 = (1 — u)?/(262), &= (u— uo)/<\/§6u), dé/du = 1/(\6%), du =\/26,d¢
und u = \/Eo-ucf + uy

@ Finally, the energy lossis AE, = % k* E* (03 + ug)
Vs
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Synchrotron radiation in quadrupoles lll A\‘(IT

® This result is generally valid for probability density functions f(x) normalised to Jj dx f(x) =1, if

mean value u and variance 03 exist.

@ Ingeneral,a = — o0 and b = + 0. In real accelerators a and b are limited by the vacuum chamber.

# The mean value of a distribution is

b
JdXXf(x)=M

@ From the definition of the variance, one immediately obtains the result derived for the special case
3/

b b b
o2 = dx (x —u)? f(x) = J dx x? f(x) — 2/4] dx x f(x) +u2J dx f(x)

va

=

b b
= | dx {xzf(x)} — u? => [ dx x? f(x) = ,uz+05
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Synchrotron radiation in quadrupoles IV A\‘(IT

@ This can be generalized to two dimensions: Because of the rotational symmetry in x-y (P}, x k2(x% + yz))
one can always find a transformation, so that the 2D function factorizes: /i1(x, y) = f(x)g(y), where g
such as fis a probability density function with mean value v and variance ayz.

@ The integral is then
d

b cd rb d b
[ J dx dy (x* + y?) h(x,y) = [ dx dy x* f(x) g(y) + J [ dx dy y* f(x) ()
= | dx x* f(x) + [ dy y* g(»)

vda

— 2 4 52 24 2
=u-+o, + v-+o,.

@ Thus, the energy loss with transverse offset and finite beam size in x and y is

Cyli 2 4.2 2 2 2
AEl-: 2—ﬂ_kE<x0+yO+Gx+O-y>'
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The FODO lattice AT
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@ The alternating arrangement
of (horizontally) focusing and 0 n 0

(horizontally) defocusing . .

quadrupoles allows to build Guadupge  DritSeace  GIRCECR Dmmspace  qUAE,
compact systems. | - One FODO Cell -

A frequently used arrangement '

is the periodic so-called ‘ X
“FODO structure”. v

@ F and D quadrupoles have comparable strength and the distance between
two equal lenses is < 2f.
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Equations of motion

@ For a (horizontally) focusing quadrupole is k < 0.
B A particle with vertical offset y in a thin quadrupole of length ds and strength k undergoes a vertical
deflection of
dy’ = — k y ds.
@ With this, a differential equation for the motion can be written immediately, called “Hill's differential
equation” with the periodic coefficient k(s):
y'+k(s)y=0
® In general, for the coordinate u(s) and the length of the periodic structure [ we write

u"+ K@) u=20 with K(s + 1) = K(s)
—k(s) + — horizontal

K(S) = ( ) p(s)?
+k(s) vertical
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Solutions of Hill’s differential equation ﬂ(".

@ Structure of a simple harmonic oscillator — but with variable reset constant K(s)

@ The independent solutions are
u(s) = am o (@) + D)
with @'(s) = L and a = const.
(5)
¥ The phase function ®(s) increases non-linearly with time or longitudinal position s, but — as the
amplitude function #(s) — must have the same periodicity as the magnetic lattice.
® The phase advance u per period length [ is derived from the betafunction f(s):

s+1
U= u(s, 1) = D(s + ) — B(s) = J

S

—dt
p()
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<— 4 FODO Cells—»

Particle trajectory @ X OX O K O X (D A\‘(IT

x/mm ,
lllustration: AN | o E
05 | | : |
@ Particle trajectory in regular 0 F | | E
FODO cells - : E
w0 0 s o0 1000 1100 1200
. PeriOdiCity of 4 FODO Ce”S, Coordinate Transformation s/m
= u(s,l) =n/2 001§
0.5
@ Normalised representation: _0_02
X(s) = x(s)/4/p(s) s b N

2 225 25 275 3 325 35 375 4
My
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Equations of motion I
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@ The general solutions of the equation u” + K(s)u = 0 are “Cosinelike” and “Sinelike” trajectories:

C(s) = cos(y/Ks)  and S(s):Lsin(\/?s) for

VK
sinh(r/ | K | s)

1
®@ These linearly independent solutions fulfill following initial conditions:

C(s) = cosh(/ | K| 5) and S(s) =
V K|

dc
co) = 1, CO) = — =0, S©0) = 0,

S

@ Any solution u(s) can be written as linear combination :
us) = CEuy + SE)u,

u'(s) = C'(ug + S'(s)ug
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Wronskian

@ The solutions of the equation of motion can be written as a (transfer) matrix:

<u(s)> B <C(s) S(S)) <u0(s)>
w'(s)) — \C(s) S'() uf(s)

@ Consider a general homogeneous linear differential equation of second order:
u” + visu' + wsu = 0

®@ For two two linearly independent solutions the Wronski determinant W can be formed:

W = i (s) - p(s) = ujly — Uyl
ui(s)  uy(s)
@ Combination of the two solutions:
uj + vou; + wsu; = 0 | (—u,)
u, + v(Su, + w(s)u, = 0 | u,
(wuy — uu) + v(s)uu, — uup) = 0
@ From this follows a differential equation for W: iiiy+v(s)w =0

KIT

Karlsruhe Institute of Technology
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Wronskian I ﬂ(".
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@ Differential equation for W: C:jlf/ +vE)W = 0
o : . _ — [ d§v(3)
® Integration immediately yields: W(s) = Wye "o

@ Without acceleration or energy loss due to synchrotron radiation, in linear beam dynamics v(s) = 0 and
thus W(s) = W, = const . . With Sinelike and Cosinelike solutions

W() == C()S(/) - CéSO = 1

@ For the transfer matrix applies in general

C(s) S(s)

WO = 1o s

= Phase space density and energy are conserved

@ This result is valid for any beam guiding system as long as v(s) = 0 and w(s) = K(s).
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Beam optics example A\‘(IT
| ilf {l

FODO lattice & poc = 0.

— 150, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 100 ~

\S* i By B I \E' ;

@ 1359 /3 RS u(s) = Cl eil<q)(s) + @)
0. | - 90
105.; ' | i 83
0.1 "~ W Beam optics functions
75. ;'70 of a LEP FODO cell
0. o calculated by “MAD”
s | [ 0
30.- \/ 55
5. L 50

0.0 T T T T T T T T T T T T T T T T T 45
2530. 2540. 2550. 2560. 2570. 2580. 2590. 2600. 2610. 2620.
s (m)
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Trajectories and /
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. . 3' I - '< - ()I : "] '~ I.'()
® The trajectories x,(s) are 2 3 2 2 2
individual solutions of the g A
equation of motion and have = -i
different initial conditions. 4 envelope
2 %6 8 10
s(m)
@ The envelope E(s) of all S g _®gr @b
trajectories is proportional to ~ _ | -
: . E O =
the beta function: -
E(S) X \/ﬂ(S) _i: T envelope
2 %6 8 10
s(m)
22 Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 1 Institute for Beam Physics and Technology (IBPT)



Matrix formalism ﬂ(“.
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u(s) = ay/B(s) cos (@(s) - §)
Full description of particle state by vector U = (u, u’)

du(s) = 1 i o . ~ i
5 u'(s) = O dsﬂ(s)acos(CD(s) 0) — a+/p(s) sin(P(s) — ) P D(s)

<sin(d>(s) —-0) — %ﬁ/(s) cos(P(s) — 5))

(s)

Linear differential equations can be transferred from location s, to location s, with a transfer matrix:

uls)\ (b c ulsp)\ u(sy)
(o) = () Gn) = (i)
For simplification we write w = \/ﬁ u(s,) =u; ¢;=>,—-o

There are two classes of solutions: the “Cosinelike with 6 = 0 and the “Sinelike” with 6 = 7 /2.

_ : u; = a w; cosg, u;, = a w; cos¢,—(alw,) sing,
Four equations are obtained: . .
;= a w; sing, i

a w; sing; + (al/w;) cos ¢,

Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 1 Institute for Beam Physics and Technology (IBPT)



Matrix formalism Il ﬂ(“.
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The matrix equation results in
u, = bu; + cu und fuy + guy

Substituting the solutions of 1, and u, results in
(1) a w,cosgp, = b (a Wy COS q[)l) + c (a W COS ) — (a/wl)singbl)

(2) a wysing, = b (a wy sin(,bl) + ¢ (a wi sin(,b1+(a/w1)cos¢1)

Summation of (1) - w, cos ¢, and (2) - w; sin ¢, gives
(3) ww,cos’¢h, = b (w12 oS ¢, cos (,152) + ¢ (wlw{ COS ¢; cos ¢, — sin ¢, cos (/52)

(4) wiw,sin® ¢, = b (wlzsin¢1 sin(,bz) + ¢ (wlw{ sin ¢, sin ¢h, + cos ¢, sin¢2)

B)+4)  wyw, = (bw? + cwlw{)(cos ¢, cos ¢, + sin ¢, sin 4)2) +c (cos ¢, sin ¢, — sin ¢, cos gbz)
B)t@d) ww, = (bw]2 +cwwy) CoOSA¢p + ¢ sinAg

Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 1 Institute for Beam Physics and Technology (IBPT)




Matrix formalism Il ﬂ(“.
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Analogous addition of (1) - w; cos ¢p; and (2) - W1 sin ¢,
(5) wiw, cos g cosg, = b (wicos®dy) + ¢ (wwicos g —sing, cos )
(6) wiw, sing;sin¢gp, = b (wl sin d)l) S (W1Wi sin” ¢, + sin ¢, cos qbl)

(5)+(6) wiw, cosA¢p = b w1 +c wiw;

With the previous result: two equations for the determination of b and ¢
(3)+(4) wiw, = (bw12+cw1w{) cosA¢p + c sinAg
c sinAg = ww, sinA¢p - ¢ = ww, sinAg¢

Substitution of ¢ in (5)+(6)
b wi= ww, cosAd —wiw,w| sinA¢d — b = (wy/w;) cosAp — wiw, sin Ag

After analogous procedure for fand g is

wy / . s
oy 08 A¢p — wiw, sin Ag W W, sin A¢g

M(s,|s) =

1+ wiwiwow)

sin A¢p — < Wl > cosA¢p — cos A¢ + ww;sin A¢g

W2
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Twiss matrix ﬂ(“.
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General transfer matrix from s, to s,:

wo , . .
o €08 A¢ — wiw, sin Ag Wi W, sin A¢

M(32|S1) =

I+ wiwiwows wi wh Wi .
———————sinA¢ — (— cos Ag —Cos A¢ +wyw,sin Ag
y)

wiw2 w2 wi

Simplification with periodic boundary conditions:  w; = w,, w; = w;, A¢ - u
COS it — ww'sin w2 sin p

1+w2w?

M =

> siny cosu+ww'sinpu
%

Definition of new functions:

Thus, the Twiss matrix for periodic structures has the form
<b c) _ (cosu+asin,u P sin u

M = . :
f g —y sin u COSU — a SIn y
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Symplectic matrices ﬂ(".
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@ A2n X 2n dimensional matrix is “symplectic”, if
ATSA = S with S= < @”

— A is symplectic, ifA~' = STA'S
B If a symplectic matrix consists of the (n X n) matrices P,Q, R, S

o pf
A= <P Q) then follows for A~ = < S I? >
R S —QT P’

— The set of symplectic (2n X 2n) matrices is closed under multiplication and inversion and therefore
form a group.

— A is symplectic, if it preserves the symplectic form X'Sy:
AX)SAYH=XTSYy V iy
This is analogous to the case of preserving the scalar product by a unitary matrix U:
U Uy =Xy

;) for real matrices A" =AT

27 Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 1 Institute for Beam Physics and Technology (IBPT)
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Symplecticity of the Twiss matrix

@ Transfer matrices for beam steering systems in general are symplectic.
Example: Twissmatrix

M - a b\ _ COSU + a sin u [ sin p
c d —ysinu COSU —a sin u

, s+ e (a4 C
B As M is real M = M = <b d)
@ Condition for symplecticity: M" S M = 8§, also

<Cl C> 0 1 a b _ (Cl C> c d

b d -1 0 c d b d —a —b
_ (ac—ca ad— bc _ 0 ad —bc

bc —ad bd—-db —(ad — bce) 0
(1+a2)_ 2
3 a

® Usingfy —a? = B = 1 yields:

KIT

Karlsruhe Institute of Technology

ad —bc = cos? j — a cos pusin u + a cos psinp — a’sin®u — (= sin® )

= cos’u + sin’u(fy —a?®) =1 g.e.d.
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Twiss matrix for periodic

structures

symplectic

T matrices can be added by
multiplication

-
o EmRRTILLT
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lll - Beam optics & beam dynamics

® Basics of transverse beam optics
. v
® Magnetic lenses
® Equations of motion and transfer matrices v/
® Optic functions and emittance
® Tune, chromaticity and resonances
®@ Dispersion and beam size

® Basics of longitudinal beam dynamics
® Longitudinal oscillations
# RF buckets and stable phase

® Oscillations and damping
@ Many-particle systems
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Recap

#@ Right-handed orthogonal coordinate system
simplification: ¥ = (0,0,v,) and B = (B,, B,,0)

@ Taylor expansion of the magnetic field in the vicinity Frenet-Serret coordinate
of the nominal trajectory (x = 0):
e o e dBV 1 e dsz l e 613By
— B(x) = — By, + — —x + — — — x° + — — x4+ .
p p p dx 2! p dx? 3! p dx3
1 1 5 1 3
= — + k x + — mx + —ox’ +
P 2! 3!
= dipole + quadrupole 4+ sextupole + octupole +

@ Structures that only consist of dipole and quadrupole fields are called “linear lattices”. The linear lattice
determines trajectory (“orbit”) and focusing properties, higher-order field components are used for correction and
error compensation.
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Recap I AT
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@ Magnets of the linear lattice:

_ | e By[T]
@ Dipole —[m™] = —B; = 0.2998 ———
p p plGeV/c]
5 e 4B, g[T/m] . 1
@ Quadrupole klm™] = ——— = 0.2998 —— = “Thinlenses”>: —=—-k
p dx p[GeV/c] f
@ Equations of motion
@ Hill's differential equation with periodic coefficients
—k(s) + 1 — horizontal
u"+ K@) u=0 with K(s + 1) = K(s) and K(s) = pls)*
+k(s) vertical

@ General solutions: “Cosinelike” and “Sinelike” functions
@ Wronski determinant W for two linearly independent solutions
@ Differential equation for W; for transfer matrices applies W(s) = 1
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Recap Il AT
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@ Transfer matrices (map the trajectory vector from s, to s,)
@ “Twiss matrix” for periodic structures determined from solutions of the equation of motion

s .
M- (cos,u a sin B sin ) _ <C S)

—y sinpu COSyU —asinyu c' s
/ 1 + 2
with the optical functions: a(s) = — Pe) , B(s) , y(s) = ﬂ
2 p(s)

@ are symplectic: form a group (multiplication of transfer matrices yields another transfer matrix)
= conservation of energy
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Composite structures
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@ The individual components of an accelerator can each be represented as transfer matrices M.
@ The entire structure can be written as a product of the individual component matrices: M = M, ... M; M, M,

— Central Orbit
Actual Orbit

B = Bending Dipole
QF = Focusing Quadrupole
QD = Defocusing Quadrupole

36 Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 2

@ Drift space:

|
My = <O 1>

® Thin quadrupole with —1/f = kl: M, = (—ll/f (1)> - (kll (1)>

_ cosly/ | k| (1/+/ | k| )sinlq/ | k|
" Tk quadrupols: Mor = | _yTRTsiniy T costy/TA]
Iy coshly/ | k| (1/4/ | k| )sinh l4/ | k|
O | /TA] sinh Iy/TK] cosh Iy/TK]
. cos psin6
® Sector dipole: Mgipoe = —(1/p)sin® cosd

Institute for Beam Physics and Technology (IBPT)
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Stability criterion T
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@ Be Mp the transfer matrix for one period length, then the movement is only stable if the product matrix
M = (MP)NI‘ for N periods and k turns does not diverge.

® M is given by
_ (b ¢\ _ [cosu+asinu psinpu

M= <f g) B < —y sinpu cos,u—asin,u>

® With U = (u, u’), the eigenvalues of M are given by MU = AU with det (M — AI') = 0. Since det M = 1 one
obtains

0=0-MNg-—D—cf = (bg—cfH—Ag+b)+1° = 1-Ab+g+4°
@ The trace of Mistr M = 2 cosy = (b + g). Substitution yields the quadratic equation 0 = 1 — 24 cosu + A%
@ The eigenvalues are thus

A = cosptq/cos’u—1 = cosputq/—sin’uy = cosutisiny = e*¥

1
EtrM <1 and |41] =1

@ Stability is ensured for real ;1 (|cosu| < 1). That implies
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The LEP FODO cell A\‘(IT
| ilf {l

FODO lattice 8+ poc = 0.
g 150. ] A ‘ 5. ‘ ‘ ‘ ‘ ‘ ‘ ‘ [ ].00§
w 135.1 ; 5 - 95
120, i | * 20
105.; i 83
0.1 "~ W Beam optics functions
75.- . of a LEP FODO cell
.- o calculated by “MAD”
] \ L 60
30. \/ 55
15,; B 50

0.0 T T T T T T T T T T T T T T T T T 45
2530. 2540. 2550. 2560. 2570. 2580. 2590. 2600. 2610. 2620.
s (m)
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Example: FODO structure
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@ As an example of a simple composite structure, we consider a regular FODO structure in thin lens approximation.

Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 2

Remark: L is half the cell length and
f is the focal length of a half quadrupole
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Example: FODO structure ﬁ(".

@ As an example of a simple composite structure, we consider a regular FODO structure in thin lens approximation.
@ From the center of the F quadrupole to the center of the D quadrupole the transfer matrix is

e~ 1 O\ 1 L\( 1 oy _ (1-Lifi L A
= A\-1/f 1)\0 1)\=1fp 1) = \ =1/ 1-LIf i 5 A A fih

®@ In order to complete the period, the “backward” structure must be traversed, i.e.

a b d b , | |
oo el U (R v A N\
@ The overall matrix is then | | |

My == (R0 ) VoL AL LV

2ac

® Einsetzen mit f; = — f, = fergibt | : :
1 —2L2/f? 2L(1 + L/f)
Mropo = M, M = (

=2(1 = LIf)(LIf 2) 1 - 2L2/f 2 Remark: L is half the cell length and

f is the focal length of a half quadrupole
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® In the general case, f; # — f, the transfer matrix is

M - M M = < I =2L/f* 2L(1 - L/fz)> ,hecktie diagram®
e —QIHA=LIf) 1 =2LIf* = 1 —
@ From the trace, the stability criterion results in : i 1
4L L osk stable |
trM=1|2——| < 2 andthus 0 < — < 1| = |
f* f* = unstable
W Foru = L/f,and v = L/f, and with L/f* = LI/f, + LIf, — L*/(f,f,) we get 0.6} *
O < u+v—-—uv < 1 - '
# If one solves these inequalities, one obtains the boundaries of the stable 0.4~ -
region:
u i 1
|l/l|=1, | |=L’ 0.2—7 ]
I —|ul
v| =1, | = v L R R v ¥ S
I+ |v] luf = [L/f4]
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In phase space Karlsruhe Institute of Technology
@ The equations of the particle trajectory (solution of Hill’s differential x|
equation) and its derivative with respect to s form a parametric
i f Ii in u-u’ at locati :
representation of an ellipse in u-u" at location s YW

u(s) = ay/B(s) cos (D(s) — 5)

(s) - <sin (®(s) — 8) L4 55 cos (@(s) 5)>
ui\s) = — ") — —_— Y\
VB® 2 ds /

@ In absence of dissipative forces, the surface of this ellipse, 7Z'A2, is
independent of s (Liouville’s theorem).
2 is referred to as the “Courant Snyder invariant”. A=W

=

@ The parameter a
yu? + 2quu’ + pu* =W

u

1 + a?
p

@ The location dependent functions a(s), #(s) and y(s) are called the “optical functions”
(formerly often known as “Twiss parameters”).

1
a=——f and y =
2ﬁ 4
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Phase space ellipse |l A\‘(IT

Karlsruhe Institute of Technology

®@ In the case of a ring or matched cell, @

the periodicity imposes equality on ! ¢ '

the input and output a and 3 values. 0.00 |- I
® This means that the particle returns o e | . 1

after each turn to the same ellipse 1,;,,::; o o2 - i

but with a different phase. | If

*n,1-%n,2-%n 3-%n 4
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Evolution of phase space ellipse along the lattice Q(IT

focusing quadrupole

............................ R
.......................... »
divergent beam ‘ focused beam
i -
X
focal point
(beam waist)
a<0 a>0
b= b B2 = P
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Beta matrix

@ Transformation of the solutions of Hill's equation gives (remember ¢(s) = ®(s) — J):

oS = —— und —sin(ps) = YO L , a@u

a +/p(s) a ay/p(s)

B With sin” ¢p(s) 4+ cos” ¢(s) = 1 and y = (1 + )/ follows

_2 ., <ﬂ(s)u/2 .\ 24/ p(s)a(s)uu’ .\ az(s)bﬂ) R
p(s) \/B(s) p(s)

y(u? + 2auu’ + pu? = a?

@ The elliptic equation can also be written in the following way:

W, o= (u ) <(Z ;) (;‘) - UTB'U

@ The “beta matrix” B withdet B = 1isgivenby B = ( p —a>
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Transformation of the beta matrix ﬂ(“.

@ The trajectory vector transforms like U, = M U,. For matrix M applies M '"M=1andM"(M")™ ! =1.

® Using the matrix relations A’ BT = (BA) and A™!B~! = (BA)~! the definition of the beta matrix can be re-
written:

w, = Ul B'U, = U/(M"M")™") Bj'(M~'M) U,
= U/M"(M")' Bi'M )M U, = U/M"(M")™" (MB)™")M U,
= U/M"(MBM")"'"M U, = MU)"( MBM")"'M U,
with the transformation relation U] = (MU,) follows immediately:
w,= Uj( MBM")™' U,
Because W, is independent of s also applies:
W,=U; B;' U,
By comparison we obtain the transformation relation of the beta matrix:
B, = MBIMT
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Transport of 3

® Example: With the transformation relation B, = MB;M" one
can observe the evolution of the beta function in the area of a
symmetry point.

® In a symmetry point s = O following conditions apply: § = /*
and o™ = 0.
A simple translation over a distance [ is given by
(u,u’y - (u+lu',u’)
@ As a consequence the beta matrix is transformed like

(1 s\ (P* O 1 0
BZ‘(O 1><0 1/ﬂ*><s 1)

_(PFH PP sIp
s/ p* 1/p*
@ The smaller the beta function, the more divergent is the beam
(Consequence of “Liouville’s theorems”).
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[ and aperture AT
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® For the symmetry point at s = 0 applies # = * and a* = 0. By definition y = (1 + a?)/p.

® For a simple drift space of length L the value of the beta function expressed as a function of L
and f* is:

LZ
po=D) = pro o

Example: Be /* = 1 cm at the symmetry point and the RMS beam size 6, = 0.1 mm.

@ The wall of the vacuum chamber should be at least 10 standard deviations (beam sizes) from
the center of the beam.

W At a distance of 5 m from the symmetry point /3 is

B, = 02 me 2™ L 55 km
o 10 T
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[ and aperture I AT
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® For the beam size applies 0 \/ﬁ That consequently means

o « 4/f; und oc* o /fF

oL \/ﬂ_L Pr

. 6 2500
e = and therefore o6, = ¢ ﬁ_* = 100-10™ m 02
(o) A/
= 10" m+vy25-10* = 5-102m

® The minimum diameter (“10 ¢”) of the vacuum chamber at a distance of 5 m from the symmetry point
is thus

d =21006, = I m!

@ In the large detectors at interaction (symmetry) points the beam increases rapidly towards both sides
— Luminosity reduction due to the “hourglass effect”

— Large beam in strong final focus quadrupoles = synchrotron radiation, background, ...
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Liouville’s theorem

@ “Under the influence of conservative forces, the phase volume remains constant.”

@ Liouville can be used to describe the properties of the beam as a whole.
@ Starting point: Time evolution of a 6d phase space element
Number of particles in the phase space element of density W:

Y(x,y, 8, Py Py D) dx dy ds dp, dp, dp
® The movement of the particle generates the currentf = (Wi, ¥y, s, ¥Pp,, lI’]by, ¥p,),
where the time derivative is taken after the time 7 along the trajectory of the phase space

element: x = dx/dr

@ The current in phase space must fulfil the continuity equation:

> b
Vi + — =0
ot
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- n ,
LIouVIIIe s theorem II Karlsruhe Institute of Technology
@ Assuming that location and momentum are independent of each other, the following is true
oY 2 5 LN LN N 2
5 =V, ¥Yr) + Vp WPp) =r VY +Y¥Y(V,r)+p Vp‘I’ + ¥ (Vpp)
T

® The temporal derivative does not depend of the location 7 itself ( = pc/E)

r cp

- = and therefore V,,? =0

¢ \c?p? + m2ct

@ From the Lorentz force equation follows
2 e KN — € — 2 e - —
Vpp = z V,,[rx B] = ; B (V,)Xr) — ; r (Vpr)

® The second term vanishes, because ﬁdoes not depend on the momentum. In the first term is Vp X 7 = 0, as
- 0s ay
(V,x7), = — — — and (p*=pi+p;+p})
ap, ops
0s 0 ¢ Py C Py Ds ay

ap, ap, (P2 +m2c2)12 B (p2 + m2c2)32 B op,

® Analog calculation for remaining components in the end provides Vpﬁ =0
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® Therefore we can write

N X d¥
— + V.¥Yr+V ¥Yp =— =20
o0t P dr

— Thus, the phase space density is invariant in time.
@ The invariance can also be shown using the properties of the transfer matrix:
— For a determinant consisting of the components of six vectors X defining a 6d

phase space volume and transforming like y, = M x;, one can show that
_— —> — . M _— —> —
| V15 V25 o5 Ve | = M| | Xx[{,%5, ..., % |

— For beam steering systems | M| is the Wronski determinant W with
W = M| = 1.
— Thus, the phase space volume is constant.
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Emittance

® As a consequence of Liouville's theorem the Wis

locationally invariant. W corresponds to a “single
particle emittance”.

@ In good approximation, the transverse charge

density distribution in a particle beam is Gaussian.

@ The beam size is defined as the standard
deviation of the charge density distribution:

0,(s) = +/ep(s)

@ The (equilibrium) emittance is thus given by
2
_0,(8)

Bl
@ The maximum possible emittance limited by the
aperture is called the acceptance.
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Trajectories and /

® The trajectories x,(s) are
individual solutions of the
equation of motion and have
different initial conditions.

X (mm)

KIT
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.2

b Rl 0 : QD

; X(s)
envelope
1 L L L 1 L L L 1 L L L 1 L
2 6 8 10
s (m)

® The envelope E(s) of all 3 _Seor b _&or  %qp
trajectories is proportional to - 1=

. . . g OF ==
beta function and emittance: = .

E(S) = A /G'B(S) :; .. envelope

2 %6 s 10
s (m)
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Optical functions

There are two ways of looking at the optics functions:

@ The first is to regard them as a parametric way of expressing the
equation of motion and its solution. This interpretation makes the
bridge from tracking single particles to the wider view of calculating
beam envelopes.

® The second is to regard them as purely geometric parameters for
defining ellipses and hence beam envelopes. Dropping the strict
correspondence to individual particles can lead to some interesting
extensions such as the inclusion of scattering.
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The beam matrix

0.6
0.4
0.2

® One can specify a covariance matrix C for the particle
distribution in the phase space. The elements of this

matrix are given by C;; = (ij) — (i)(j), where i and j 9
represent the coordinates. g .02

@ The covariance matrix =~ .04

) =

. Ci Cyj\ _ < ep —ga) e

Gi G —ea gy .

@ With 0.4
detC = ¢ (ﬁy - a2> = ¢ 0.2

@ the RMS emittance is given by 03
def -0

edys = detC = C, C.. — C2, 04

@ This definition is valid for any distribution and can -0.6

easily be extended to 6D.
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Emittance terms

@ Single particle emittance
® Courant Snyder invariant: W, = yu” + 2auu’ + ffu”
@ Area of the phase space ellipse delimited by the possible trajectory vectors U of a single particle at a
certain location divided by m: W, =A/x

@ Equilibrium emittance
@ Effective emittance resulting from the effects of both radiation damping and quantum excitation by
synchrotron radiation.
@ ... is determined by the lattice design.

@ RMS emittance (“root mean square”)
@ Derived from the charge density distribution of the beam

@ The “RMS beam size” is given by 03 =<u’>—<u>’
@ Thus, the RMS emittance is ¢z, = ag(s) ! B(s)
@ The RMS emittance can be equal to the equilibrium emittance.
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Energy independent emittance A\‘(IT

@ All emittances defined so far are dependent on the beam energy.
“Adiabatic damping” during acceleration process: ¢ o« /£

— Phase space elements in transverse beam dynamics:
AulAu" instead of correctly according to Liouville AuAp, with Ap, = pyu'

— During acceleration p, increases, thus the geometric (“physical”) emittances
AuAu’ decrease to keep the product AuAp, constant.

® Definition of a “normalized emittance”: ey = (Pye
where f =v/candy = E/(mocz).
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Normalised coordinates
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@ Reminder: The particle trajectory is given by u(s) = a 1/f(s) cos(P(s))
@ A practical normalization (“Floquet's coordinates”) transforms the phase space ellipse into a circle:

u
wl@) = — = a cosd

VP

dw :
—=\/B +—u:—asmCI>
dd \/ﬁ
@ The Courant Snyder invariant immediately becomes
2
dw
w? + | — = a?
dd

@ Also convenient: Angle-action-coordinated
@ Non-linearities lead to deviations of the circular shape
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Normalised coordinates Il

0.005

.0025

norgalised X'

-0.0025

-0.005

Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 2

I SR

et

LR

" Section 63

| [

-0.005

-0.0025

0

0.0025 0.005
normalised X

KIT

Karlsruhe Institute of Technology

Example:
Simulation of the horizontal phase
space in the CERN PS
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Summary A\‘(IT
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Matrix formalism
@ Matrices can be derived either from solution of equation of motion or optical
properties with the same numerical result

1
@ The trajectory is stable, if stability criterion is fulfilled: EtrM <1

Phase space
@ Solutions of the equation of motion represent an ellipse in phase space.

@ The area of the ellipse (“Courant Snyder invariant”) is conserved as a
consequence of Liouville’s theorem.

@ Transition for single particle to particle ensemble: phase space area occupied
by the beam defines beam emittance.
o(s) = 1/ep(s)
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lll - Beam optics & beam dynamics

® Basics of transverse beam optics

B Magnetic lenses v
@ Equations of motion and transfer matrices v/
® Optic functions and emittance v

® Tune, chromaticity and resonances
®@ Dispersion and beam size

® Basics of longitudinal beam dynamics
® Longitudinal oscillations
# RF buckets and stable phase

® Oscillations and damping
@ Many-particle systems
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Recap: Composite structures
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@ The individual components of an accelerator can each be represented as transfer matrices M.
@ The entire structure can be written as a product of the individual component matrices: M = M, ... M; M, M,

@ Drift space:

— Central Orbit
----- Actual Orbit

B = Bending Dipole
QF = Focusing Quadrupole
QD = Defocusing Quadrupole

65 Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 3

@ Thick quadrupole: M =

® Sector dipole: Mgipoe = <

|
My = <O 1>

@ Thin quadrupole with —1/f = kl: M, = <—11/f (1)> = < I O>

ki 1
cosl\/ k] (1/4/Tksin Iy/Tk]

—/Tk[ sinly/Tk| cos I/ |k|
coshly/ k| (1/4/Tk])sinh Iy/Tk|

V/1k[ sinh Iy/Tk| coshly/ k|

cos psin6
—(1/p)sin@ cos@
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Re ca p : P h ase s pace Karlsruhe Institute of Technology
@ The equations of the particle trajectory (solution of Hill’s differential x|
equation) and its derivative with respect to s form a parametric
i f Ii in u-u’ at locati :
representation of an ellipse in u-u" at location s YW

u(s) = ay/B(s) cos (D(s) — 5)

(s) - <sin (®(s) — 8) L4 55 cos (@(s) 5)>
ui\s) = — ") — —_— Y\
VBE) 2 ds /
2

@ In absence of dissipative forces, the surface of this ellipse, ra“, is
independent of s (Liouville’s theorem).
2 is referred to as the “Courant Snyder invariant”. A=W

=

@ The parameter a
yu? + 2quu’ + pu* =W

u

1 + a?
p

@ The location dependent functions a(s), #(s) and y(s) are called the “optical functions”
(formerly often known as “Twiss parameters”).

1
a=——f and y =
2ﬁ 4
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Recap: Emittance terms ﬁ(".

@ Single particle emittance
® Courant Snyder invariant: W, = yu” + 2auu’ + ffu”
@ Area of the phase space ellipse delimited by the possible trajectory vectors U of a single particle at a
certain location divided by m: W, =A/x

@ Equilibrium emittance
@ Effective emittance resulting from the effects of both radiation damping and quantum excitation by
synchrotron radiation.
@ ... is determined by the lattice design.

@ RMS emittance (“root mean square”)
@ Derived from the charge density distribution of the beam

@ The “RMS beam size” is given by 03 =<u’>—<u>’
@ Thus, the RMS emittance is ¢z, = 03(5) ! B(s)
@ The RMS emittance can be equal to the equilibrium emittance.
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Tunes and resonances

® The “tune” or working point of an accelerator with N
periods is defined as the number of betatron

oscillations per revolution.
L
N u 1 ds 1 ds
Q u— — p—
21 21

pGs) 2z ] p(s)

0
@ If the tune reaches certain rational numbers, the
movement becomes unstable.

@ Condition for optical resonances:
mQ,+nQ, = p mit m,n,p€”

@ Order of the resonance: |m| + ||
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Tunes and resonances

® The “tune” or working point of an accelerator with N

periods is defined as the number of betatron -~
oscillations per revolution.
L
Q_Nu_les_l ds
2 27 P 27 T BGs)

@ If the tune reaches certain rational numbers, the
movement becomes unstable.

@ Condition for optical resonances:
mQ,+nQ, = p mit m,n,p€”
@ Order of the resonance: |m| + ||
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Synchro betatron resonances A\‘(IT

350

| /Q"/ Qy |
< 0/0+0)
0,/@,+20)

v

3000 270 -Q)

® In a real accelerator, coupling resonances
often occur between all three oscillation
planes (hence the name “synchro-betatron
resonances”):

2507 0,/(0,-20)

200 ‘L

130rg /(0 - 305

v

0,/(Q,+305)

’

100+

Vertical RMS Beam Size [um]

0 0.5 1 1.5

2
Time [min]

332

mQ.+nQ, +10;, = p mit m,n,l,p € ”Z

J1A]

To

330

@ Example: Vertical beam size when
crossing synchro-betatron resonances ’ 1 " Time [tnin]
by changing the quadrupole gradients:
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Synchro betatron resonances

® In a real accelerator, coupling resonances
often occur between all three oscillation
planes (hence the name “synchro-betatron
resonances”):

Vertical RMS Beam Size [um]

mQ,+nQ,+ 10, = pmitm,n,l,pe”Z

@ Example: Vertical beam size when
crossing synchro-betatron resonances
by changing the quadrupole gradients:
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Gradient errors

® The unperturbed transport matrix for one turn is given by (®, = Ny = 270)
cos @y + a sin @, psind,
Mo = < —y sin®, cos @, — a sin d)(,)
B Representations for an unperturbed and a perturbed quadrupole are

(1 0 W 1 0
Mo = \—kpds 1) "M ™ T \—(ky+ Ak)ds 1

# In order to incorporate the perturbation into the overall matrix, one goes “backwards” through the affected quadrupole:

M = mmo_lM0 with mm;' = < Alkd (1)>
- s

u cos @, + a sin D, P sin @,
~ \—Ak ds (cos @y + asin®;) —y sin®, —Ak ds f3sin D, + cos D, — a sin D,

® Since tr M = 2 cos @, the change in cos @ can be written as

: sin @,
A(cos®) = —AD sin®, = (rtM—-trMy)/2 = —

B Ak ds

|AD| = — = 27A0 and AQ = L +ﬂ(s)Ak(s)ds
2 dr
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Half-integer resonance

@ A more detailed derivation based on the inhomogeneous equation of motion with perturbation
term yields higher-order terms to the static tune displacement.

@ The following approximation can be obtained for small perturbations:

1
AQ = — 4—ﬂ<Jg P(s) Ak(s) ds

(s) Ak(s)sin (2Qy[x — x(5)]) ds
where ds = O, f(s)dy

#@ The first term corresponds to a tune shift, the second is an oscillation term that averages out
over many turns unless (J, is half-integer.

1
4z sin(27Q,) ﬂgﬁ

1
®@ Resonance condition: O, # 5 n
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Tune-Diagramme
mQx +nQy +1Qs

4. Ordnung 14. Ordnung

P mit m,n,l,p €
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Momentum offset: dispersion orbit

@ The deflection angle in the dipole magnets depends on the particle energy.
® In a storage ring, dipoles deflect horizontally, therefore mainly horizontal dispersion.
@ Vertical dispersion is caused by field errors or misalignment for example.

@ As a consequence, the equation of motion becomes an inhomogeneous differential
equation with an additional term on the right hand side:
Ap 1
X"+ K(s) x =——
Po P
® The horizontal particle position at location s relative to the nominal orbit consists of two

components:
x(s) = xg(5) + xp(s)
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Dispersion orbit with homogeneous dipole field ﬂ(".

® xp can be understood as a special orbit for the particle with
momentum offset.

¥ Normalizing this orbit with respect to Ap/p, yields the
dispersion function

Ax
Ap/py

that describes the change of transverse position Ax due to a
momentum deviation Ap/p,.

D(s) =

¥ The total transverse offset for a particle with Ap/p, # 0 is then

Ap
x(s) = xﬁ(s) + xp(s) = x/}(s) + D.(s) p_
T @ The beam size increases due to off-momentum particles in
/ dispersive sections:

Closed orbit for Ap/po > 0
o= \/eﬁ + Dz(Ap/pO)2
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Momentum compaction factor

@ A particle with Ap/p, > 0 has a longer path length than the reference particle. The dependence of the relative
change of orbit length AL /L on the momentum deviation Ap/p, defines the "momentum compaction factor”:
AL Ap

= ac—

L Po
@ The change of orbit length of a particle that follows the closed dispersion orbit x,(ss) is

Xp(s A D
AL = %Fds p(s) = =L dds (S).
p(s) Po p(s)
@ With this we can also write . as

1 # D(s)
a, = — (Pds
L p(s)
@ As a rough approximation, . can also be estimated from the (integer part of the) horizontal tune:

z.B. 0.~ 100, a.~1-107*

% —_—
¢ 2
X
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Perturbation terms ﬂ(“.

Karlsruhe Institute of Technology

@ Ansatz for the particular solution of the inhomogeneous differential equation including perturbation p(s):

P"(s) + K(s) P(s) = p(s)
@ A solution can be written from the principal solutions of the homogeneous differential equation using Green's
function G(5,5) = S()CE) — C(s)S(5):
S

P(s) = J p©§) G(s,5) ds

0
® Insertion (with C = C(§), S = S5), p = p), C = C(s), etc.) yields
Ps) =S| pCds — CJ p S ds
Jo 0

@ First derivative:

Pis)=S8 | pCds + SCp - C’J pSds — SCp
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Perturbation terms Il ﬂ(".

Karlsruhe Institute of Technology

@ Second derivative:  P'(s) = §' [ pCds — C j' pSds

0 0
P'(s) = S”| pCds + SCp — C”[ pSds — C' Sp
0 0

S
= p(CS'-C'S) + 8 J pCds — C” [ pSds
0 0
® Reminder: (CS' — C'S) = W = 1. Furthermore, for the solutions of the homogeneous differential equation S” + KS = 0 and
C" + KC = 0. From this follows

N N

péd§+KcJ pSdi = p + K “ pCSds - [ ﬁSC’d's‘]

P'(s) = p — KS[
0 0 0

0

N

=p+1<“5ﬁ(c§—sé)d§] =p+K[J

5G(s,5) d§]
)

)
= p(s) — K(s) P(s) = p(s) = P'(s) + K(s) P(s)

® The general solution of the equations of motion is thus  u(s) = aC(s) + bS(s) + P(s).
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Dispersion function
@ Application to the case of deflection of a particle with energy deviation in a dipole:
1 Ap 1
u" + K@u = — =
Po(s)  Po Po(s)
@ General solution with perturbation term: u(s) = aC(s) + bS(s) + 6 D(s)

u'(s) = aC’'(s) + bS’(s) + o D'(s)
@ Ansatz with Green’s function:
S 1 » » S 1 1
D(s) = [ —@) [SC — C 8| d5 = S(s) [ —(@) CG)ds = C(s) J —(5) S@) ds
o Po o Po o Po
® For D(s) to vanish at a location s, the quotient
Sy L ~
St o 5y S48

C(sy) f(‘;d L cds

Po
@ Adjustment by manipulation of the focusing structure

S
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Achromatic structures ﬁ(".

Karlsruhe Institute of Technology

@ In an achromatic structure is at position s;:  D(s;) = D'(s;) = 0.

This means that from s, to the next dipole the dispersion disappears.
Sd 1 Sd 1
@ With /. = [ — Cd§ and [ = J — § d§ this condition is satisfied if
o Po o Po

D(@sy;)) = 0 ==S8@sy) I + C(sy) I and D'(sy)) = 0 =—=S8(sy) I + C'(sy) Ig
@ Resolving to I~ and I gives
[C(sy) S'(sy) — SGsp) C'(s)l I = 0 and [C(sy) S'(sy) — S(sp) C'sp)l Iy = 0,

® Since W = 1, the condition for vanishing dispersion is
Sd 1 Sd 1
o Po o Po

#@ Such a structure is called a (first order) achromat.
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Low emittance lattices Q(IT

Karlsruhe Institute of Technology
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Chromaticity A\‘(IT

Karlsruhe Institute of Technology

@ The focusing in the quadrupole that a particle experiences depends on its momentum.

@ The tune therefore also depends on particle momentum (tune distribution in the beam) and one
defines the so-called “chromaticity” as

d A
Q/ZPOQN ¢

dp Ap/py
@ The natural chromaticity of a linear lattice is

1
Q, =— — #ds p.(s) K(s).
4

@ Chromaticity can also be considered as a gradient error of the quadrupole.

® |n general, one observes a superposition of the effects of Q’ and D, which leads to a shift of
the longitudinal and transverse position of the focal point.

® For large circular accelerators Q' can become very large (z.B. -150 at LEP, <-2000 at FCC-ee)
and has to be compensated.
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Sextupole magnets - ﬂ(".

@ Chromaticity is compensated by sextupole magnets in
dispersive regions.

1
B.(x,y) ~x-y and Byx,y)~ 5 (2 — y?)

o =6 nl
ml g B MO R 3 Focal Length—>3
i Sextupol
@ As in case of the Ap/p > 0 extupo
quadrupole the
normalized sextupole
strength is Ap/p=0__
e /
m=-——=8 Ap/p <0
Po i

Quadrupol
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Phase space ﬁ(".

Karlsruhe Institute of Technology

@ Non-linear fields cause non-linear oscillations.
® The frequency of such a n oscillation depends on the amplitude.
@ Particle loss due to resonances — limitations of an accelerator’s dynamic aperture.

@ Observation in normalized phase space (Ellipse — Kreis): X = x/4/f. and X' = 1 /f.x"+ a,x/1/P,

@ Example: iterative elimination to determine the size of a resonant island for protons
(Monte Carlo methods and tracking)

TURN: 496
0.02 ———— 0.02 ————————— 0.02 ———
O el
8 8 I
0.01 tracking g oo ] only particles g *" |
. o . o
with MAD = : populating the = |
0 & 5 > 0t
over ~ 500 | island are left I
s revolutions 001 | ] after procedure 1 |
Section 10 ] I Section 10 ] L Section 10 ]
-0.02 002 b 002 bl
-0.02 -0.01 0 0.01 0.02 -0.02 -0.01 0 0.01 0.02 -0.02 -0.01 0 0.01 0.02
normalised X normalised X normalised X
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Synchrotron oscillations

@ Phase focusing: Particles in a circular accelerator with
RF potential V() = V,,siny oscillate in phase.
@ One turn of the reference particle lasts 7, = L/ v,

@ For particles of arbitrary energy applies

Ly+ AL Vo v
' = —— x~ (LO + AL) — 5
vo + Av Vo RF Voltage

1

~ E(Lovo + VoAL — LyAv)
0

@ The relative temporal deviation is

Ty Ty TOV(%
AL Av Ap | Av
= = g, —F — A o AT
Ly Vo Po Yo »
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Synchrotron tune ﬂ(".

Karlsruhe Institute of Technology

®@ With the relativistic relation Av/v, = (1 /yz)(Ap/pO) we get

AT Ap Av Ap 1 Ap < 1 > Ap
— =0 —— =, ———— = |a.-—— ) —
Ty Po Vo Po  7* Po v*) Po
W Since Ay =27 fppAT and fy = hf,., the phase shift is
1) A 1 1\ A A
Ay = 2nh (ac——2> Gy 27rh<—2——2> 2P oah N, e
Y Do Yo Y Po Do

— Aty =y, there is no phase focusing.
@ For negligible radiation damping the equation for the oscillation is yr + Q? v = 0 with frequency

h dv
Q@ = o2 () . ()
271'E0 dl//

@ For small oscillation amplitude dV/dy is constant. Using the condition for stable phase angle U, = ¢ V,, siny,, the synchrotron tune
is defined as

2
Q h h
Q2 = | — | = 1t e Vy cosy, = et e Vi — U}
; Wrey 27TEO ’ 277:E0
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Transition ﬂ(".

Karlsruhe Institute of Technology

@ In many (old) proton synchrotrons of middle and high energy E > 5 GeV the point of y = y,. must be crossed.
@ As phase focusing is paused at this point, the transition must be quick: “y;, jump”
D(s)

p(s) 4
- 100 ms

1
— Change of optics, since y,, = 1/, /o, with o, = I <Jgds

1
@ Reminder: Tune shiftis AQ = 1n ﬂgﬁ(s)Ak(s) ds
T

@ Tune neutral y,, manipulation, if /K, + ,K, = 0

@ Example: CERN PS
-2 < E,<26GeV
- 0 ~ 6.25
= 7y = 6.1
— dy/dt =40s7!

&
A

time
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Longitudinal phase space

@ For real values of the synchrotron frequency the phase can be writtenas v =y cos(Qr + y,),
where y; is any phase for the ith particle at time f = 0.

® The temporal derivative of the phase is iy = — y, Q sin(Qr + ).

Analogous to the transverse phase space, y and yr describe the longitudinal motion in the phase
space (i, ).

A Ay (fe A
® Fromy = Tli/ = WZ;&) =—pch r]cp—p an oscillation equation can be derived for the energy
0
o . _ _ . _Ap 4 o Qy
deviation (with fc = 27/Ty = w,,): 0 = o =T e = e sin(Qr + ;)

— Particle energy oscillates with synchrotron frequency ..

— The energy deviation is the conjugate variable to the phase y.

® In general, the equation for the phase is
QZ

y o+ (sin(l//s + ) — sim/fs) =0

COS I,
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eeeeeeeeeeeeeeeeeeeeeeeeeeee

= ——=—

v/,

@ The boundary line between
stable and unstable trajectories
in the phase space is called
“separatrix”.

@ The stable area enclosed by
the separatrix is also called the
"RF Bucket".

1.5 IP% or
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RF bucket and y/, A\‘(IT

Karlsruhe Institute of Technology

@ The ratio of the available RF voltage and the energy loss per turn is defined as the "over voltage factor":
#@ Looking at the separatrix, the momentum acceptance can be written after some transformations as

2
A eV, siny, 1
el = o 7% 5 <\/q2—1 — arccos—>
pj) 7 h |n.| epo q

@ The momentum acceptance therefore depends on the selected RF voltage.

P T T ]

=180.0°

—_——
=120.0°
S
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Adjacent buckets A\‘(IT

@y, = 180°: stationary case

® . = 150°: during acceleration

#@ Particle “migration” between
adjacent buckets is possible

Y/ 21
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“Ghost bunches” in the SPS Q(IT
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&
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2

dE/E (%)

CERN document server: Oliver Stein, PhD thesis
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Injection losses in LHC due to ghost bunches ﬂ(".

MKI TDI 0.8
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CERN document server: Oliver Stein, PhD thesis
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L
N u 1 [ds 1 ds

® Tune: number of betatron oscillations per revolution O = > = >
T T

p(s) 2z} p(s)

0
® Condition for optical resonances: mQ, +nQ, = p mit m,n,p € Z

@ Order of the resonance: |m| + |n|
1
@ Chromaticity: Change of tune for particles with energy deviation O/, = — i CJADdS p.(s) K(s)
T
Au

Ap/pg
@ The horizontal particle position at location s relative to the nominal orbit:

Ap
x(s) = x5(5) + xp(s) = x3(5) + D(s) p_
0

@ Dispersion function: D, (s) =
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Summary Il ﬁ(".

Karlsruhe Institute of Technology

o - AL Ap 1, PG
Momentum compaction factor o, = = — 5
p S

LPo

@ Synchrotron oscillation: Longitudinal oscillation around reference particle
@ Particle energy oscillates with synchrotron frequency

ah
® Synchrotron tune: Q° = = > \/62 Ve — U

@ Separatrix: Boundary line between stable and unstable trajectories
@ RF bucket: stable area enclosed by the separatfix
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