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Basics of transverse beam optics 

Magnetic lenses 

Equations of motion and transfer matrices 

Optic functions and emittance 

Tune, chromaticity and resonances 

Dispersion and beam size 

Basics of longitudinal beam dynamics 

Longitudinal oscillations 

RF buckets and stable phase 

Oscillations and damping 

Many-particle systems
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A bunch typically consists of some 109 particles.

Different processes (synchrotron radiation, scattering at residual gas molecules, …) lead to a 
distribution of beam energy around the nominal energy.

Without focusing, the vacuum chambers would have to be large requiring extremely strong 
magnets.

Electric and magnetic fields are used to steer and focus the particle beams:

⃗F = q( ⃗E + ⃗v × ⃗B )

At relativistic velocities  and  have the same effect if E B

E = cB

                 ✗ → B = 1 T ✓ ⇔ E = 3 × 108 V/m

Right-handed orthogonal coordinate system

Simplification:  and ⃗v = (0,0,vs)
⃗B = (Bx, By,0)
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Basics of beam dynamics

observed particle
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For highly relativistic particles follows from equality of Lorentz and Centripetal Force

1

ρ(x, y, s)
=

e

p
By(x, y, s) =

e c

βE
By(x, y, s)

Taylor expansion of the magnetic field in the vicinity of the nominal trajectory ( ):x = 0

By(x) = By0 +
dBy

d x
x +

1

2!

d2By

d x2
x2 +

1

3!

d3By

d x3
x3 + …

This immediately leads to

e

p
By(x) =

e

p
By0 +

e

p

dBy

d x
x +

1

2!

e

p

d2By

d x2
x2 +

1

3!

e

p

d3By

d x3
x3 + …

=
1

ρ
+ k x +

1

2!
m x2 +

1

3!
o x3 + …

                              ⇒ dipole + quadrupole + sextupole + octupole + …

Structures that only consist of dipole and quadrupole fields are called “linear lattices”. The linear lattice determines 
trajectory (“orbit”) and focusing properties, higher-order field components are used for correction and error compensation.

4

Magnetic fields along the beam trajectory
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The magnetic field is calculated by 

. 

 

For  the field of a dipole magnet is 

    with gap . 

With radius  the dipole strength is  

.

∮ ⃗Hd ⃗s = hH0 + lHE = nI

HE =
1

μr

H0

μr ≫ 1

B0 = μ0H0 =
μ0nI

h
h

ρ
1

ρ
[m−1] =

e

p
B0 = 0.2998

B0[T]

p[GeV/c]
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Dipole
l µr ! 1

HE

H0

n

2
I

n

2
I

KARA dipole

cross section of 
a LEP dipole
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The magnetic field decreases 
at the edge. 

The useful field region can   
be increased by partial 
compensation of the edge 
field.  

 Fit so-called “shims” to 

     the edge of the poles.

⇒
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Dipol — edge field
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The quadrupole field increases linearly with transverse distance from 
the magnet center: 

 

Is  the current in  windings of the coils and  the distance of the 
poles to the magnet center, a perfectly formed pole has the gradient 

. 

Definition of a normalized quadrupole strength in analogy of the 

deflection strength  of a dipole magnet: 

Bx(y) = − g ⋅ y

By(x) = − g ⋅ x

I n R

g =
∂By

∂x
=

∂Bx

∂y
= g =

2μ0nI

R2

1/ρ

k =
e

p
g
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Like the dipole strength, the field gradient is determined from the relationship of  
field integral and current in the coil windings:

∮ ⃗H ⃗ds = n I

The integral from I via II to III may be broken up as follows:

∮ ⃗H ⃗ds =

II

∫
I

⃗H0
⃗ds +

III

∫
II

⃗HE
⃗ds +

I

∫
III

⃗H ⃗ds

The second and third term vanish:

because   and because

III

∫
II

⃗HE
⃗ds = 0 μr ≫ 1

I

∫
III

⃗H ⃗ds = 0 ⃗H ⊥ ⃗ds

The field between the poles is determined by  and . From this follows thatBx = − g y By = − gx

H = B /μ0 = − (g /μ0) x2 + y2 = − (g /μ0) r

Integration up to the pole radius :         R n I =

II

∫
I

Hds = −
g

μ0

R

∫
0

rds =
g

μ0

R2

2
→ g =

2μ0n I

R2
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Quadrupole gradient
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In analogy to the dipole magnet, the normalized 
quadrupole gradient can be written as 

 

The deflection (“kick”) of a particle passing through a 

quadrupole of length  with offset  is 

. 

The focal length  of a quadrupole of length  is given by 

. 

In the case of , we speak of thin lenses, no matter 

how large  actually is.

k[m−2] = 0.2998
g[T/m]

p[GeV/c]

l x

Δx′ = Δ (
dx

ds ) = klx

f l

1

f
= − k l

f ≫ l

l
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Quadrupole “focal length”

KARA quadrupole
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A particle undergoes a deflection in the 
quadrupole: again synchrotron radiation occurs! 

Since the quadrupole field increases linearly with 
the particle offset, the energy loss is also position 
dependent. 

The ensemble of particles has an average energy 
loss, which can be calculated from beam size and 
position.
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Synchrotron radiation in quadrupoles
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The transverse radiation power is .Pγ =
Cγ

2π
c

E4

ρ2

The quadrupole field is  and , respectively. Bx =
k p

e
y By =

k p

e
x

Thus the bending radius inside the quadrupole is  and  for .1/ρ = k u Pγ =
c Cγ

2π
E4 k2 u2 u = (x, y)

Integration over the time of flight in the quadrupole field provides the energy loss:

ΔEi = ∫
Δti

dtPγ =
c Cγ

2π
E4 k2 u2

li

c

For a bunch with Gaussian-distributed charge density is  .ΔEi =
Cγ li

2π
k2 E4 ∫ du

1

2π σu

u2 e
− 1

2
(u − u0)

2

σ2
u

Substitutions:      ,   ,   ,     

                                                                                                                                          und   

ξ2 = (u − u0)2 /(2σ2
u ) ξ = (u − u0)/( 2σu) dξ /du = 1/( 2σu) du = 2σudξ

u = 2σuξ + u0

Finally, the energy loss is    .ΔEi =
Cγ li

2π
k2 E4 (σ2

u + u2
0)
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Synchrotron radiation in quadrupoles II
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This result is generally valid for probability density functions  normalised to , if 

mean value  and variance  exist.

f (x) ∫
b

a
dx f (x) = 1

μ σ2
μ

In general,  and . In real accelerators  and  are limited by the vacuum chamber. a = − ∞ b = + ∞ a b

The mean value of a distribution is

∫
b

a

dx x f (x) = μ

From the definition of the variance, one immediately obtains the result derived for the special case

σ2
μ = ∫

b

a

dx (x − μ)2 f (x) = ∫
b

a

dx x2 f (x) − 2μ∫
b

a

dx x f (x) + μ2 ∫
b

a

dx f (x)

= ∫
b

a

dx {x2 f (x)} − μ2
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Synchrotron radiation in quadrupoles III

⇒ ∫
b

a

dx x2 f(x) = μ2 + σ2
μ
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This can be generalized to two dimensions: Because of the rotational symmetry in -  ( ) 

one can always find a transformation, so that the 2D function factorizes: , where  

such as  is a probability density function with mean value  and variance . 

x y Pγ ∝ k2(x2 + y2)

h(x, y) = f (x)g(y) g

f ν σ2
ν

The integral is then 

∫
b

a
∫

d

c

dx dy (x2 + y2) h(x, y) = ∫
b

a
∫

d

c

dx dy x2 f (x) g(y) + ∫
b

a
∫

d

c

dx dy y2 f (x) g(y)

= ∫
b

a

dx x2 f (x) + ∫
d

c

dy y2 g(y)

= μ2 + σ2
μ + ν2 + σ2

ν .

Thus, the energy loss with transverse offset and finite beam size in x and y is

.ΔEi =
Cγ li

2π
k2 E4 (x2

0 + y2
0 + σ2

x + σ2
y )
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Synchrotron radiation in quadrupoles IV
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The alternating arrangement  
of (horizontally) focusing and  
(horizontally) defocusing  
quadrupoles allows to build  
compact systems.  
A frequently used arrangement  
is the periodic so-called  
“FODO structure”.  

F and D quadrupoles have comparable strength and the distance between 

two equal lenses is . ≲ 2f

14

The FODO lattice
O-Struktur”

Defocusing
QuadrupoleQuadrupole

FocusingFocusing
Quadrupole
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OD
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For a (horizontally) focusing quadrupole is .k < 0

A particle with vertical offset  in a thin quadrupole of length  and strength  undergoes a vertical 

deflection of  

y ds k

.dy′ = − k y ds

With this, a differential equation for the motion can be written immediately, called “Hill's differential 

equation” with the periodic coefficient : k(s)

y′ ′ + k(s) y = 0

In general, for the coordinate  and the length of the periodic structure  we writeu(s) l

             with   u′ ′ + K(s) u = 0 K(s + l) = K(s)

K(s) = {
−k(s) +

1

ρ(s)2
horizontal

+k(s)  vertical

15

Equations of motion



Institute for Beam Physics and Technology (IBPT)Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 1

Structure of a simple harmonic oscillator — but with variable reset constant  K(s)

The independent solutions are

u(s) = a β(s) e±i(Φ(s) + Φ0)

with    and  Φ′ (s) =
1

β(s)
a = const .

The phase function  increases non-linearly with time or longitudinal position , but — as the 

amplitude function  — must have the same periodicity as the magnetic lattice. 

Φ(s) s
β(s)

The phase advance  per period length  is derived from the betafunction : μ l β(s)

μ = μ(s, l) = Φ(s + l) − Φ(s) =

s+l

∫
s

1

β(t)
dt

16

Solutions of Hill’s differential equation
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Illustration:  

Particle trajectory in regular 
FODO cells 

Periodicity of 4 FODO cells,  

  

Normalised representation:

⇒ μ(s, l) = π /2

X(s) = x(s)/ β(s)

17

Particle trajectory
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The general solutions of the equation  are “Cosinelike” and “Sinelike” trajectories:u′ ′ + K(s)u = 0

C(s) = cos( Ks) and S(s) =
1

K
sin( Ks) for K > 0

C(s) = cosh( |K | s) and S(s) =
1

|K |
sinh( |K | s) for K < 0

These linearly independent solutions fulfill following initial conditions: 

C(0) = 1, C′ (0) =
dC

ds
= 0, S(0) = 0, S′ (0) =

dS

ds
= 1

Any solution  can be written as linear combination :u(s)

u(s) = C(s)u0 + S(s)u′ 0

u′ (s) = C′ (s)u0 + S′ (s)u′ 0

18

Equations of motion II
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The solutions of the equation of motion can be written as a (transfer) matrix: 

(
u(s)

u′ (s)) = (
C(s) S(s)

C′ (s) S′ (s)) (
u0(s)

u′ 0(s))
Consider a general homogeneous linear differential equation of second order: 

u′ ′ + v(s)u′ + w(s)u = 0

For two two linearly independent solutions the Wronski determinant  can be formed:2

2 =
u1(s) u2(s)

u′ 1(s) u′ 2(s)
= u1u′ 2 − u2u′ 1

Combination of the two solutions: 

u′ ′ 1 + v(s)u′ 1 + w(s)u1 = 0 | (−u2)

u′ ′ 2 + v(s)u′ 2 + w(s)u2 = 0 |u1

(u1u′ ′ 2 − u2u′ ′ 1 ) + v(s)(u1u′ 2 − u2u′ 1) = 0

From this follows a differential equation for :                     2
d2

ds
+ v(s)2 = 0

19

Wronskian
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Differential equation for :      2
d2

ds
+ v(s)2 = 0

Integration immediately yields: 2(s) = 20e
− ∫s

s0
d s̃ v(s̃)

Without acceleration or energy loss due to synchrotron radiation, in linear beam dynamics  and 

thus . With Sinelike and Cosinelike solutions

v(s) = 0

2(s) = 20 = const .

20 = C0S′ 0 − C′ 0S0 = 1

For the transfer matrix applies in general 

2(s) =
C(s) S(s)

C′ (s) S′ (s)
= 1

This result is valid for any beam guiding system as long as  and .v(s) = 0 w(s) = K(s)

20

Wronskian II

 Phase space density and energy are conserved⇒
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Beam optics example

2530. 2540. 2550. 2560. 2570. 2580. 2590. 2600. 2610. 2620.

s (m)

δ E/ p 0c = 0 .FODO lattice

0.0

15.

30.

45.

60.

75.

90.

105.

120.

135.

150.

β
(m

)

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

D
x

(m
)

β y β x Dx

Beam optics functions 
of a LEP FODO cell 
calculated by “MAD”

u(s) = a β(s) e±i(Φ(s) + Φ0)
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The trajectories  are 

individual solutions of the 
equation of motion and have 
different initial conditions. 

The envelope  of all 

trajectories is proportional to 
the beta function: 

xi(s)

E(s)

E(s) ∝ β(s)

22

Trajectories and β
∝

envelope

envelope
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u(s) = a β(s) cos (Φ(s) − δ)
Full description of particle state by vector     U = (u, u′ )

du(s)

ds
= u′ (s) =

1

2 β(s)

d

ds
β(s) a cos(Φ(s) − δ ) − a β(s) sin(Φ(s) − δ )

d

ds
Φ(s)

= −
a

β(s) (sin(Φ(s) − δ ) −
1

2
β′ (s) cos(Φ(s) − δ ))

Linear differential equations can be transferred from location  to location  with a transfer matrix:s1 s2

(
u(s2)

u′ (s2)) = (b c

f g) (
u(s1)

u′ (s1)) = M(s2 |s1)(
u(s1)

u′ (s1))
For simplification we write    ,   ,   w = β u(si) = ui ϕi = Φi − δ

There are two classes of solutions: the “Cosinelike with  and the “Sinelike” with .δ = 0 δ = π /2

Four equations are obtained:   
ui = a wi cos ϕi u′ i = a w′ i cos ϕi − (a /wi) sin ϕi

ũi = a wi sin ϕi ũ′ i = a w′ i sin ϕi + (a /wi) cos ϕi

23

Matrix formalism
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The matrix equation results in

   
u2 = bu1 + cu′ 1 und u′ 2 = f u1 + gu′ 1

ũ2 = bũ1 + cũ′ 1 und ũ′ 2 = f ũ1 + gũ′ 1

Substituting the solutions of  and  results inu1 u2

(1)            a w2 cos ϕ2 = b (a w1 cos ϕ1) + c (a w′ 1 cos ϕ1 − (a /w1)sin ϕ1)
(2)            a w2 sin ϕ2 = b (a w1 sin ϕ1) + c (a w′ 1 sin ϕ1 + (a /w1)cos ϕ1)

Summation of (1)  and (2)  gives⋅ w1 cos ϕ2 ⋅ w1 sin ϕ2

(3)            w1w2 cos2 ϕ2 = b (w2
1 cos ϕ1 cos ϕ2) + c (w1w′ 1 cos ϕ1 cos ϕ2 − sin ϕ1 cos ϕ2)

(4)            w1w2 sin2 ϕ2 = b (w2
1 sin ϕ1 sin ϕ2) + c (w1w′ 1 sin ϕ1 sin ϕ2 + cos ϕ1 sin ϕ2)

(3)+(4)      w1w2 = (bw2
1 + cw1w′ 1)(cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2) + c (cos ϕ1 sin ϕ2 − sin ϕ1 cos ϕ2)

(3)+(4)      w1w2 = (bw2
1 + cw1w′ 1) cos Δϕ + c sin Δϕ

24

Matrix formalism II



Institute for Beam Physics and Technology (IBPT)Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 1

Analogous addition of (1)  and  (2)⋅ w1 cos ϕ1 ⋅ w1 sin ϕ1

(5)                w1w2 cos ϕ1 cos ϕ2 = b (w2
1 cos2 ϕ1) + c (w1w′ 1 cos2 ϕ1 − sin ϕ1 cos ϕ1)

(6)                w1w2 sin ϕ1 sin ϕ2 = b (w2
1 sin2 ϕ1) + c (w1w′ 1 sin2 ϕ1 + sin ϕ1 cos ϕ1)

(5)+(6)          w1w2 cos Δϕ = b w2
1 + c w1w′ 1

With the previous result: two equations for the determination of  and b c

(3)+(4)          w1w2 = (b w2
1 + c w1w′ 1) cos Δϕ + c sin Δϕ

       c sin Δϕ = w1w2 sin2 Δϕ → c = w1w2 sin Δϕ

Substitution of  in (5)+(6)c

       b w2
1 = w1w2 cos Δϕ − w2

1 w2w′ 1 sin Δϕ → b = (w2 /w1) cos Δϕ − w′ 1w2 sin Δϕ

After analogous procedure for  and  isf g

         M(s2 |s1) =

w2

w1
cos Δϕ − w′ 1w2 sin Δϕ w1w2 sin Δϕ

−
1 + w1w′ 1w2w′ 2

w1w2
sin Δϕ − (

w′ 1
w2

−
w′ 2
w1 ) cos Δϕ

w1

w2
cos Δϕ + w1w′ 2 sin Δϕ

25

Matrix formalism III
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General transfer matrix from  to :s1 s2

  M(s2 |s1) =

w2

w1
cos Δϕ − w′ 1w2 sin Δϕ w1w2 sin Δϕ

−
1 + w1w′ 1w2w′ 2

w1w2
sin Δϕ − (

w′ 1

w2
−

w′ 2

w1 ) cos Δϕ
w1

w2
cos Δϕ + w1w′ 2 sin Δϕ

Simplification with periodic boundary conditions:     w1 = w2, w′ 1 = w′ 2, Δϕ → μ

  M =
cos μ − ww′ sin μ w2 sin μ

−
1 + w2w′ 2

w2
sin μ cos μ + ww′ sin μ

Definition of new functions:                α = − ww′ = −
β′ 

2
β = w2 γ =

1 + (ww′ )2

w2
=

1 + α2

β

Thus, the Twiss matrix for periodic structures has the form

M = (b c

f g) = (
cos μ + α sin μ β sin μ

−γ sin μ cos μ − α sin μ) = (C S

C′ S′ )

26

Twiss matrix
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A  dimensional matrix is “symplectic", if 2n × 2n

    with         for real matrices    A†SA = S S = ( ∅ 4

−4 ∅) A† = AT

  is symplectic, if → A A−1 = ST A†S

If a symplectic matrix consists of the ( ) matrices n × n P, Q, R, S

    then follows for    A = (P Q

R S) A−1 = ( S† −R†

−Q† P† )
 The set of symplectic ( ) matrices is closed under multiplication and inversion and therefore → 2n × 2n
form a group.

   is symplectic, if it preserves the symplectic form :→ A ⃗x†S ⃗y

(A ⃗x )† S (A ⃗y) = ⃗x† S ⃗y ∀ ⃗x, ⃗y

This is analogous to the case of preserving the scalar product by a unitary matrix : U

(U ⃗x )† (U ⃗y) = ⃗x† ⃗y

27

Symplectic matrices
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Transfer matrices for beam steering systems in general are symplectic. 
Example: Twissmatrix

M = (a b

c d) = (
cos μ + α sin μ β sin μ

−γ sin μ cos μ − α sin μ)
As  is real         M M† = MT = (

a c

b d)
Condition for symplecticity:         , alsoMT S M = S

(
a c

b d) ( 0 1

−1 0) (a b

c d) = (
a c

b d) ( c d

−a −b)
= (ac − ca ad − bc

bc − ad bd − db) = ( 0 ad − bc

−(ad − bc) 0 )
Using  yields: βγ − α2 = β

(1 + α2)

β
− α2 = 1

ad − bc = cos2 μ − α cos μ sin μ + α cos μ sin μ − α2 sin2 μ − (−βγ sin2 μ)

 = cos2 μ + sin2 μ(βγ − α2) = 1  q.e.d.

28

Symplecticity of the Twiss matrix
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focusing

linear lattice
quadrupoles

dipoles

bending/deflection

equations of motion

Hill’s equation with periodic coefficients

Sinelike solutions

Cosinelike solutions

Wronski determinant  for two  

linearly independent solutions

2

transfer matrix 

symplectic

1

f
= − k l

2(s) = 1

Twiss matrix for periodic 
structures

matrices can be added by 
multiplication

energy conservation
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Basics of transverse beam optics 

Magnetic lenses 

Equations of motion and transfer matrices 

Optic functions and emittance 

Tune, chromaticity and resonances 

Dispersion and beam size 

Basics of longitudinal beam dynamics 

Longitudinal oscillations 

RF buckets and stable phase 

Oscillations and damping 

Many-particle systems

32
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Right-handed orthogonal coordinate system

Simplification:  and ⃗v = (0,0,vs)
⃗B = (Bx, By,0)

Taylor expansion of the magnetic field in the vicinity  

of the nominal trajectory ( ):x = 0

e

p
By(x) =

e

p
By0 +

e

p

dBy

d x
x +

1

2!

e

p

d2By

d x2
x2 +

1

3!

e

p

d3By

d x3
x3 + …

=
1

ρ
+ k x +

1

2!
m x2 +

1

3!
o x3 + …

                              ⇒ dipole + quadrupole + sextupole + octupole + …

Structures that only consist of dipole and quadrupole fields are called “linear lattices”. The linear lattice 
determines trajectory (“orbit”) and focusing properties, higher-order field components are used for correction and 
error compensation.

33

Recap

observed particle

x(s)

y(s)

x̂

ρ

ŝ

ŷ

design orbit

Frenet-Serret coordinate 
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Magnets of the linear lattice:

Dipole 
1

ρ
[m−1] =

e

p
B0 = 0.2998

B0[T]

p[GeV/c]

Quadrupole           “Thin lenses”:      k[m−2] =
e

p

dBy

dx
= 0.2998

g[T/m]

p[GeV/c]
⇒

1

f
= − k l

Equations of motion

Hill's differential equation with periodic coefficients

             with                and   u′ ′ + K(s) u = 0 K(s + l) = K(s) K(s) = {
−k(s) +

1

ρ(s)2
horizontal

+k(s)  vertical

General solutions: “Cosinelike” and “Sinelike” functions

Wronski determinant  for two linearly independent solutions2

Differential equation for ; for transfer matrices applies 2 2(s) = 1

34

Recap II
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Transfer matrices (map the trajectory vector from  to ) s1 s2

“Twiss matrix” for periodic structures determined from solutions of the equation of motion

M = (
cos μ + α sin μ β sin μ

−γ sin μ cos μ − α sin μ) = (C S

C′ S′ )
with the optical functions:      α(s) = −

β(s)′ 

2
, β(s) , γ(s) =

1 + α(s)2

β(s)

are symplectic: form a group (multiplication of transfer matrices yields another transfer matrix)

 conservation of energy⇒

35

Recap III
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The individual components of an accelerator can each be represented as transfer matrices .  

The entire structure can be written as a product of the individual component matrices:  

Drift space:              

Thin quadrupole with :     

Thick quadrupole:   

 

Sector dipole:        

Mi

M = Mn … M3 M2 M1

Mdrift = (1 l

0 1)
−1/f = kl Mquad = ( 1 0

−1/f 1) = ( 1 0

kl 1)
MQF =

cos l |k | (1/ |k | )sin l |k |

− |k | sin l |k | cos l |k |

MQD =
cosh l |k | (1/ |k | )sinh l |k |

|k | sinh l |k | cosh l |k |

Mdipole = (
cos θ ρ sin θ

−(1/ρ)sin θ cos θ )
B 

B 

B 

B QD 

QF 

QF 

QD 

QD 

B = Bending Dipole 

QF = Focusing Quadrupole 

QD = Defocusing Quadrupole 

Central Orbit 

Actual Orbit 

36

Composite structures
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Be  the transfer matrix for one period length, then the movement is only stable if the product matrix   

 for  periods and  turns does not diverge.

Mp

M = (Mp)Nk N k

 is given by M

M = (b c

f g) = (
cos μ + α sin μ β sin μ

−γ sin μ cos μ − α sin μ)
With , the eigenvalues of  are given by  with . Since  one 
obtains

U = (u, u′ ) M MU = λU det (M − λ I ) = 0 det M = 1

0 = (b − λ)(g − λ) − cf = (bg − cf ) − λ(g + b) + λ2 = 1 − λ(b + g) + λ2

The trace of  is .    Substitution yields the quadratic equation .  M tr M = 2 cos μ = (b + g) 0 = 1 − 2λ cos μ + λ2

The eigenvalues are thus 

λ = cos μ ± cos2 μ − 1 = cos μ ± −sin2 μ = cos μ ± i sin μ = e±iμ

Stability is ensured for real   ( ). That implies                  and      μ |cos μ | ≤ 1
1

2
tr M ≤ 1 |λ | = 1

37

Stability criterion
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The LEP FODO cell

2530. 2540. 2550. 2560. 2570. 2580. 2590. 2600. 2610. 2620.

s (m)

δ E/ p 0c = 0 .FODO lattice

0.0

15.

30.

45.

60.

75.

90.

105.

120.

135.

150.

β
(m

)

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

D
x

(m
)

β y β x Dx

Beam optics functions 
of a LEP FODO cell 
calculated by “MAD”
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ktur “rückwärts” durchlaufen

L L

f f−f

As an example of a simple composite structure, we consider a regular FODO structure in thin lens approximation. 

39

Example: FODO structure

Remark: L is half the cell length and 
f is the focal length of a half quadrupole
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ktur “rückwärts” durchlaufen

L L

f f−f

As an example of a simple composite structure, we consider a regular FODO structure in thin lens approximation. 

From the center of the F quadrupole to the center of the D quadrupole the transfer matrix is

    mit    MFD = ( 1 0

−1/f2 1) (1 L

0 1) ( 1 0

−1/f1 1) = (
1 − L /f1 L

−1/f* 1 − L /f2)
1

f*
=

1

f1
+

1

f2
−

L

f1 f2

In order to complete the period, the “backward” structure must be traversed, i.e.

MFD = M = (a b

c d) ⇒ Mr = (d b
c a)

The overall matrix is then

Mtot = Mr M = (ad + bc 2bd

2ac ad + cb)
Einsetzen mit  ergibt f1 = − f2 = f

MFODO = Mr M = ( 1 − 2L2 /f 2 2L(1 + L /f )

−2(1 − L /f )(L /f 2) 1 − 2L2 /f 2 )
39

Example: FODO structure

Remark: L is half the cell length and 
f is the focal length of a half quadrupole
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In the general case, , the transfer matrix is f1 ≠ − f2

MFODO = Mr M = (
1 − 2L /f * 2L(1 − L /f2)

−(2/f *)(1 − L /f1) 1 − 2L /f * )
From the trace, the stability criterion results in 

     and thus      tr M = 2 −
4L

f *
< 2 0 <

L

f *
< 1

For  and  and with  we getu = L /f1 v = L /f2 L /f * = L /f1 + L /f2 − L2 /( f1 f2)

0 < u + v − uv < 1

If one solves these inequalities, one obtains the boundaries of the stable 

region: 

|u | = 1, |v | =
|u |

1 − |u |
,

|v | = 1, |u | =
|v |

1 + |v |

40

FODO II

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|L / f1|

|L
 /

 f
2

|

unstable

stable

Region:

|L
 /
 f

2
|

|L / f1|

|v
| 
=

|u| =

„necktie diagram“
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x’

x

2 ds

)

The equations of the particle trajectory (solution of Hill’s differential 

equation) and its derivative with respect to  form a parametric  

representation of an ellipse in -  at location :  

 

 

In absence of dissipative forces, the surface of this ellipse, , is 

independent of  (Liouville’s  theorem). 

The parameter  is referred to as the “Courant Snyder invariant”. 

 

   and    

The location dependent functions ,  and  are called the “optical functions” 
(formerly often known as “Twiss parameters”).

s

u u′ s

u(s) = a β(s) cos (Φ(s) − δ)

u′ (s) = −
a

β(s) (sin (Φ(s) − δ) −
1

2

d

ds
β(s) cos (Φ(s) − δ))

π A2

s

a2

γu2 + 2αuu′ + βu′ 2 = Wu

α = −
1

2
β′ γ =

1 + α2

β

α(s) β(s) γ (s)

41

In phase space
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In the case of a ring or matched cell,  
the periodicity imposes equality on 
the input and output α and β values.  

This means that the particle returns 
after each turn to the same ellipse 
but with a different phase.

42

Phase space ellipse II
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α = 0

focal point


(beam waist)
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Evolution of phase space ellipse along the lattice

focusing quadrupole
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β = β1
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Transformation of the solutions of Hill’s equation gives (remember ): 

     und      

With  and  follows 

 

 

The elliptic equation can also be written in the following way: 

 

The “beta matrix”  with  is given by      

ϕ(s) = Φ(s) − δ

cos(ϕ(s)) =
u

a β(s)
−sin(ϕ(s)) =

β(s) u′ 

a
+

α(s) u

a β(s)

sin2 ϕ(s) + cos2 ϕ(s) = 1 γ = (1 + α2)/β

u2

β(s)
+ (β(s)u′ 2 +

2 β(s)α(s)uu′ 

β(s)
+

α2(s)u2

β(s) ) = a2 = Wu

γ(s)u2 + 2α(s)uu′ + β(s)u′ 2 = a2

Wu = (u u′ ) (
γ α

α β) (
u

u′ ) = UT B−1 U

B det B = 1 B = ( β −α

−α γ )
44

Beta matrix
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The trajectory vector transforms like . For matrix  applies  and .U2 = M U1 M M−1M = 1 MT(MT)−1 = 1

Using the matrix relations  and  the definition of the beta matrix can be re-

written:

AT BT = (BA)T A−1B−1 = (BA)−1

Wu = UT
1 B−1

1 U1 = UT
1 (MT(MT)−1) B−1

1 (M−1M) U1

= UT
1 MT((MT)−1 B−1

1 M−1)M U1 = UT
1 MT((MT)−1 (MB1)

−1)M U1

    = UT
1 MT( MB1MT)−1M U1 = (MU1)

T( MB1MT)−1M U1

with the transformation relation  follows immediately:UT
2 = (MU1)

T

Wu = UT
2 ( MB1MT)−1 U2

Because  is independent of  also applies:Wu s

Wu = UT
2 B−1

2 U2

By comparison we obtain the transformation relation of the beta matrix:

B2 = MB1MT

45

Transformation of the beta matrix
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Example: With the transformation relation  one 
can observe the evolution of the beta function in the area of a 
symmetry point.  

In a symmetry point  following conditions apply:   

and .  

A simple translation over a distance  is given by  

 

As a consequence the beta matrix is transformed like 

 

 

The smaller the beta function, the more divergent is the beam 
(Consequence of “Liouville’s theorems”).

B2 = MB1MT

s = 0 β = β*

α* = 0

l

(u, u′ ) → (u + lu′ , u′ )

B2 = (1 s

0 1) (
β* 0

0 1/β*) (1 0

s 1)
= (β* + (s2 /β*) s /β*

s /β* 1/β*)

46

Transport of β
ng

er

nz l

)

u

u’

√

Wγ∗

√

Wβ∗

β(s) = β∗ + s
2

β∗

α(s) = −

s

β∗

ter

o-

β
 /
 m

s / m

β
*
 = 1.00 m

β
*
 = 0.10 m

β
*
 = 0.01 m

0

1

2

3

4

5
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For the symmetry point at  applies   and . By definition .  

For a simple drift space of length  the value of the beta function expressed as a function of  

and  is:   

 

Example: Be  at the symmetry point and the RMS beam size .  

The wall of the vacuum chamber should be at least 10 standard deviations (beam sizes) from 
the center of the beam.  

At a distance of 5 m from the symmetry point  is 

s = 0 β = β* α* = 0 γ = (1 + α2)/β

L L

β*

β(s = L) = β* +
L2

β*

β* = 1 cm σu = 0.1 mm

β

βL = 10−2 m +
25 m2

10−2 m
≈ 2.5 km

47

 and apertureβ
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For the beam size applies . That consequently means 

    und     

    and therefore     

 

The minimum diameter (“ ”) of the vacuum chamber at a distance of 5 m from the symmetry point 
is thus 

 

In the large detectors at interaction (symmetry) points the beam increases rapidly towards both sides 

 Luminosity reduction due to the “hourglass effect” 

 Large beam in strong final focus quadrupoles   synchrotron radiation, background, ...

σ ∝ β

σL ∝ βL σ* ∝ β*

σL

σ*
=

βL

β*
σL = σ*

βL

β*
= 100 ⋅ 10−6 m

2500

10−2

= 10−4 m 25 ⋅ 104 = 5 ⋅ 10−2 m

10 σ

d = 2 10 σL = 1 m !

→

→ ⇒

48

 and aperture IIβ
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“Under the influence of conservative forces, the phase volume remains constant.”

Liouville can be used to describe the properties of the beam as a whole.

Starting point: Time evolution of a 6d phase space element    

Number of particles in the phase space element of density : Ψ

Ψ(x, y, s, px, py, ps) dx dy ds dpx dpy dps

The movement of the particle generates the current ,  

where the time derivative is taken after the time  along the trajectory of the phase space 

element:  

⃗j = (Ψ ·x, Ψ ·y, Ψ ·s, Ψ ·px, Ψ ·py, Ψ ·ps)

τ
·x = dx /dτ

The current in phase space must fulfil the continuity equation: 

∇ ⃗j +
∂Ψ

∂τ
= 0

49

Liouville’s theorem
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Assuming that location and momentum are independent of each other, the following is true 

−
∂Ψ

∂τ
= ∇r (Ψ

·
⃗r ) + ∇p (Ψ

·
⃗p ) =

·
⃗r ∇r Ψ + Ψ (∇r

·
⃗r ) +

·
⃗p ∇pΨ + Ψ (∇p

·
⃗p )

The temporal derivative does not depend of the location  itself ( )⃗r β = pc /E

     and therefore     

·
⃗r

c
=

c ⃗p

c2p2 + m2c4
∇r

·
⃗r = 0

From the Lorentz force equation follows

∇p

·
⃗p =

e

c
∇p[

·
⃗r × ⃗B ] =

e

c
⃗B (∇p ×

·
⃗r ) −

e

c

·
⃗r (∇p × ⃗B )

The second term vanishes, because  does not depend on the momentum. In the first term is , as  ⃗B ∇p ×
·
⃗r = 0

     and     (∇p ×
·
⃗r )x =

∂ ·s

∂py

−
∂ ·y

∂ps

(p2 = p2
x + p2

y + p2
s )

∂ ·s

∂py

=
∂

∂py

c ps

(p2 + m2c2)1/2
=

c py ps

(p2 + m2c2)3/2
=

∂ ·y

∂ps

Analog calculation for remaining components in the end provides ∇p

·
⃗p = 0

50

Liouville’s theorem II
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Therefore we can write

∂Ψ

∂τ
+ ∇r Ψ

·
⃗r + ∇p Ψ

·
⃗p =

dΨ

dτ
= 0

 Thus, the phase space density is invariant in time. →
The invariance can also be shown using the properties of the transfer matrix: 

 For a determinant consisting of the components of six vectors  defining a 6d  

     phase space volume and transforming like , one can show that

→ ⃗x

yi = M xi

| ⃗y1, ⃗y2, …, ⃗y6 | = |M | | ⃗x1, ⃗x2, …, ⃗x6 |

 For beam steering systems  is the Wronski determinant  with→ |M | 2
. 2 = |M | = 1

 Thus, the phase space volume is constant.→

51

Liouville’s theorem III
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As a consequence of Liouville’s theorem the  is 

locationally invariant.  corresponds to a “single 

particle emittance”. 

In good approximation, the transverse charge 
density distribution in a particle beam is Gaussian.  

The beam size is defined as the standard  
deviation of the charge density distribution: 

 

The (equilibrium) emittance is thus given by 

. 

The maximum possible emittance limited by the 
aperture is called the acceptance.

W

W

σu(s) = εβ(s)

ε =
σ2

u(s)

β(s)

52

Emittance
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The trajectories  are 

individual solutions of the 
equation of motion and have 
different initial conditions. 

The envelope  of all 

trajectories is proportional to 
beta function and emittance: 

xi(s)

E(s)

E(s) = ϵ β(s)

53

Trajectories and β
∝

envelope

envelope
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There are two ways of looking at the optics functions:

The first is to regard them as a parametric way of expressing the 

equation of motion and its solution. This interpretation makes the 

bridge from tracking single particles to the wider view of calculating 

beam envelopes. 

The second is to regard them as purely geometric parameters for 

defining ellipses and hence beam envelopes. Dropping the strict 

correspondence to individual particles can lead to some interesting 

extensions such as the inclusion of scattering. 

54

Optical functions
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One can specify a covariance matrix  for the particle 
distribution in the phase space. The elements of this 

matrix are given by , where  and  

represent the coordinates. 

The covariance matrix 

 

With 

 

the RMS emittance is given by 

 

This definition is valid for any distribution and can  
easily be extended to 6D.

C

Cij = ⟨ij⟩ − ⟨i⟩⟨ j⟩ i j

C = (
Cii Cij

Cji Cjj) = ( εβ −εα

−εα εγ )
det C = ε2 (βγ − α2) = ε2

ε2
RMS

def
= det C = Cxx Cx′ x′ − C2

xx′ 
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The beam matrix
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Single particle emittance 

Courant Snyder invariant:  

Area of the phase space ellipse delimited by the possible trajectory vectors  of a single particle at a 

certain location divided by :   

Equilibrium emittance 

Effective emittance resulting from the effects of both radiation damping and quantum excitation by 
synchrotron radiation.  

… is determined by the lattice design.  

RMS emittance (“root mean square”) 

Derived from the charge density distribution of the beam  

The “RMS beam size” is given by  

Thus, the RMS emittance is  

The RMS emittance can be equal to the equilibrium emittance.

Wu = γu2 + 2αuu′ + βu′ 2

U

π Wu = A /π

σ2
u = < u2 > − < u >2

εRMS = σ2
u(s) / β(s)

56

Emittance terms
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All emittances defined so far are dependent on the beam energy. 

“Adiabatic damping” during acceleration process:     

 Phase space elements in transverse beam dynamics:  

instead of correctly according to Liouville with  

 During acceleration  increases, thus the geometric (“physical”) emittances  

   decrease to keep the product  constant. 

Definition of a “normalized emittance”:  

where  and . 

ε ∝ 1/E0

→
ΔuΔu′ ΔuΔpu Δpu = p0u′ 

→ p0

ΔuΔu′ ΔuΔpu

εN = (β γ) ε

β = v/c γ = E/(m0c2)

57

Energy independent emittance
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Reminder: The particle trajectory is given by  

A practical normalization (“Floquet's coordinates”) transforms the phase space ellipse into a circle:  

 

The Courant Snyder invariant immediately becomes 

 

Also convenient:   Angle-action-coordinated 

Non-linearities lead to deviations of the circular shape

u(s) = a β(s) cos(Φ(s))

w(θ) =
u

β
= a cos Φ

dw

dΦ
= β u′ +

α

β
u = − a sin Φ

w2 + (
dw

dΦ )
2

= a2

58

Normalised coordinates

ort

a2

dw/dΦ

w
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θ
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Normalised coordinates II
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Matrix formalism 

Matrices can be derived either from solution of equation of motion or optical 
properties with the same numerical result 

The trajectory is stable, if stability criterion is fulfilled:  

Phase space 

Solutions of the equation of motion represent an ellipse in phase space. 

The area of the ellipse (“Courant Snyder invariant”) is conserved as a 
consequence of Liouville’s theorem. 

Transition for single particle to particle ensemble: phase space area occupied 
by the beam defines beam emittance.

60

Summary 

σ(s) = ϵ β(s)

1

2
tr M ≤ 1
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Basics of transverse beam optics 

Magnetic lenses 

Equations of motion and transfer matrices 

Optic functions and emittance 

Tune, chromaticity and resonances 

Dispersion and beam size 

Basics of longitudinal beam dynamics 

Longitudinal oscillations 

RF buckets and stable phase 

Oscillations and damping 

Many-particle systems

64

III - Beam optics & beam dynamics
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The individual components of an accelerator can each be represented as transfer matrices .  

The entire structure can be written as a product of the individual component matrices:  

Drift space:              

Thin quadrupole with :     

Thick quadrupole:   

 

Sector dipole:        

Mi

M = Mn … M3 M2 M1

Mdrift = (1 l

0 1)
−1/f = kl Mquad = ( 1 0

−1/f 1) = ( 1 0

kl 1)
MQF =

cos l |k | (1/ |k | )sin l |k |

− |k | sin l |k | cos l |k |

MQD =
cosh l |k | (1/ |k | )sinh l |k |

|k | sinh l |k | cosh l |k |

Mdipole = (
cos θ ρ sin θ

−(1/ρ)sin θ cos θ )
B 

B 

B 

B QD 

QF 

QF 

QD 

QD 

B = Bending Dipole 

QF = Focusing Quadrupole 

QD = Defocusing Quadrupole 

Central Orbit 

Actual Orbit 
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Recap: Composite structures
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x’

x

2 ds

)

66

Recap: Phase space

The equations of the particle trajectory (solution of Hill’s differential 

equation) and its derivative with respect to  form a parametric  

representation of an ellipse in -  at location :  

 

 

In absence of dissipative forces, the surface of this ellipse, , is 

independent of  (Liouville’s  theorem). 

The parameter  is referred to as the “Courant Snyder invariant”. 

 

   and    

The location dependent functions ,  and  are called the “optical functions” 
(formerly often known as “Twiss parameters”).

s

u u′ s

u(s) = a β(s) cos (Φ(s) − δ)

u′ (s) = −
a

β(s) (sin (Φ(s) − δ) −
1

2

d

ds
β(s) cos (Φ(s) − δ))

πa2

s

a2

γu2 + 2αuu′ + βu′ 2 = Wu

α = −
1

2
β′ γ =

1 + α2

β

α(s) β(s) γ (s)
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Single particle emittance 

Courant Snyder invariant:  

Area of the phase space ellipse delimited by the possible trajectory vectors  of a single particle at a 

certain location divided by :   

Equilibrium emittance 

Effective emittance resulting from the effects of both radiation damping and quantum excitation by 
synchrotron radiation.  

… is determined by the lattice design.  

RMS emittance (“root mean square”) 

Derived from the charge density distribution of the beam  

The “RMS beam size” is given by  

Thus, the RMS emittance is  

The RMS emittance can be equal to the equilibrium emittance.

Wu = γu2 + 2αuu′ + βu′ 2

U

π Wu = A /π

σ2
u = < u2 > − < u >2

εRMS = σ2
u(s) / β(s)

67

Recap: Emittance terms
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The “tune” or working point of an accelerator with  

periods is defined as the number of betatron 

oscillations per revolution. 

 

If the tune reaches certain rational numbers, the 

movement becomes unstable. 

Condition for optical resonances: 

   mit    

Order of the resonance:   

N

Q =
N μ

2π
=

1

2π

L

∫
0

ds

β(s)
=

1

2π ∮
ds

β(s)

mQx + nQy = p m, n, p ∈ ℤ

|m | + |n |

68

Tunes and resonances

µ

xn

kick

Bedingung für optische Resonanzen:
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The “tune” or working point of an accelerator with  

periods is defined as the number of betatron 

oscillations per revolution. 

 

If the tune reaches certain rational numbers, the 

movement becomes unstable. 

Condition for optical resonances: 

   mit    

Order of the resonance:   

N

Q =
N μ

2π
=

1

2π

L

∫
0

ds

β(s)
=

1

2π ∮
ds

β(s)

mQx + nQy = p m, n, p ∈ ℤ

|m | + |n |
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In a real accelerator, coupling resonances 
often occur between all three oscillation 
planes (hence the name “synchro-betatron 
resonances”):  

 

Example: Vertical beam size when 
crossing synchro-betatron resonances    
by changing the quadrupole gradients:

mQx + nQy + lQs = p mit m, n, l, p ∈ ℤ

69
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The unperturbed transport matrix for one turn is given by ( )Φ0 = Nμ = 2πQ

M0 = (
cos Φ0 + α sin Φ0 β sin Φ0

−γ sin Φ0 cos Φ0 − α sin Φ0
)

Representations for an unperturbed and a perturbed quadrupole are

    und    m0 = ( 1 0

−k0ds 1) m = ( 1 0

−(k0 + Δk)ds 1)
In order to incorporate the perturbation into the overall matrix, one goes “backwards” through the affected quadrupole: 

    with        M = mm−1
0 M0 mm−1

0 = ( 1 0

−Δkds 1)
M = (

cos Φ0 + α sin Φ0 β sin Φ0

−Δk ds (cos Φ0 + α sin Φ0) − γ sin Φ0 −Δk ds β sin Φ0 + cos Φ0 − α sin Φ0
)

Since , the change in  can be written astr M = 2 cos Φ cos Φ

Δ(cos Φ) = − ΔΦ sin Φ0 = (tr M − tr M0)/2 = −
sin Φ0

2
β Δk ds

   and   |ΔΦ | =
β Δk ds

2
= 2πΔQ ΔQ =

1

4π ∮ β(s)Δk (s) ds

70

Gradient errors
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A more detailed derivation based on the inhomogeneous equation of motion with perturbation 
term yields higher-order terms to the static tune displacement. 

The following approximation can be obtained for small perturbations: 

 

                                                                                         where  

The first term corresponds to a tune shift, the second is an oscillation term that averages out 

over many turns unless  is half-integer.   

Resonance condition:      

ΔQ = −
1

4π ∮ β(s) Δk(s) ds

−
1

4π sin(2πQ0) ∮ β(s) Δk(s)sin (2Q0[π − χ(s)]) ds

ds = Q0β(s)dχ

Q0

Q0 ≠
1

2
n

71

Half-integer resonance
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The deflection angle in the dipole magnets depends on the particle energy. 

In a storage ring, dipoles deflect horizontally, therefore mainly horizontal dispersion. 

Vertical dispersion is caused by field errors or misalignment for example. 

As a consequence, the equation of motion becomes an inhomogeneous differential 

equation with an additional term on the right hand side: 

 

The horizontal particle position at location  relative to the nominal orbit consists of two 

components:  

x′ ′ + K(s) x =
Δp

p0

1

ρ

s

x(s) = xβ(s) + xD(s)

73

Momentum offset: dispersion orbit
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xD can be understood as a special orbit for the particle with 

momentum offset.

Normalizing this orbit with respect to  yields the 

dispersion function

Δp /p0

 Dx(s) =
Δx

Δp /p0

that describes the change of transverse position  due to a 

momentum deviation .

Δx

Δp /p0

The total transverse offset for a particle with  is thenΔp /p0 ≠ 0

.x(s) = xβ(s) + xD(s) = xβ(s) + Dx(s)
Δp

p0

The beam size increases due to off-momentum particles in 

dispersive sections:

σ = ϵβ + D2(Δp /p0)2

ρ

Closed orbit for Δp/p0 > 0

x
β

74

Dispersion orbit with homogeneous dipole field

x
D
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A particle with  has a longer path length than the reference particle. The dependence of the relative 

change of orbit length  on the momentum deviation  defines the ”momentum compaction factor”:  

 

The change of orbit length of a particle that follows the closed dispersion orbit  is 

. 

With this we can also write  as 

 

As a rough approximation,  can also be estimated from the (integer part of the) horizontal tune:   

          z. B.  

Δp /p0 > 0

ΔL /L Δp /p0

ΔL

L
= αc

Δp

p0

xD(s)

ΔL = ∮ ds
xD(s)

ρ(s)
=

Δp

p0
∮ ds

D(s)

ρ(s)

αc

αc =
1

L ∮ ds
D(s)

ρ(s)

αc

αc ≈
1

Q2
x

Qx ≈ 100, αc ≈ 1 ⋅ 10−4

75

Momentum compaction factor
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Ansatz for the particular solution of the inhomogeneous differential equation including perturbation : p(s)

P′ ′ (s) + K(s) P(s) = p(s)

A solution can be written from the principal solutions of the homogeneous differential equation using Green's 

function :G(s, s̃ ) = S(s)C(s̃ ) − C(s)S(s̃ )

P(s) = ∫
s

0

p(s̃ ) G(s, s̃ ) ds̃

Insertion (with , , , , etc.) yieldsC̃ = C(s̃ ) S̃ = S(s̃ ) p̃ = p(s̃ ) C = C(s)

P(s) = S ∫
s

0

p̃ C̃ ds̃ − C ∫
s

0

p̃ S̃ ds̃

First derivative:  

P′ (s) = S′ ∫
s

0

p̃ C̃ ds̃ + S C p − C′ ∫
s

0

p̃ S̃ ds̃ − S C p

= S′ ∫
s

0

p̃ C̃ ds̃ − C′ ∫
s

0

p̃ S̃ ds̃

76

Perturbation terms
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Second derivative:      P′ (s) = S′ ∫
s

0

p̃ C̃ ds̃ − C′ ∫
s

0

p̃ S̃ ds̃

P′ ′ (s) = S′ ′ ∫
s

0

p̃ C̃ ds̃ + S′ C p − C′ ′ ∫
s

0

p̃ S̃ ds̃ − C′ S p

= p(CS′ − C′ S ) + S′ ′ ∫
s

0

p̃ C̃ ds̃ − C′ ′ ∫
s

0

p̃ S̃ ds̃

Reminder: . Furthermore, for the solutions of the homogeneous differential equation  and 

. From this follows  

(CS′ − C′ S ) = 2 = 1 S′ ′ + KS = 0

C′ ′ + KC = 0

P′ ′ (s) = p − K S ∫
s

0

p̃ C̃ ds̃ + K C ∫
s

0

p̃ S̃ ds̃ = p + K [ ∫
s

0

p̃ C S̃ ds̃ − ∫
s

0

p̃ S C̃ ds̃]
           = p + K [ ∫

s

0

p̃ (C S̃ − S C̃) ds̃] = p + K [ ∫
s

0

p̃G (s, s̃ ) ds̃]
= p(s) − K(s) P(s) ⇒ p(s) = P′ ′ (s) + K(s) P(s)

The general solution of the equations of motion is thus      .u(s) = aC(s) + bS(s) + P(s)

77

Perturbation terms II
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Application to the case of deflection of a particle with energy deviation in a dipole:   

u′ ′ + K(s)u =
1

ρ0(s)

Δp

p0

=
1

ρ0(s)
δ

General solution with perturbation term:              u(s) = aC(s) + bS(s) + δ D(s)

u′ (s) = aC′ (s) + bS′ (s) + δ D′ (s)
Ansatz with Green’s function:

D(s) = ∫
s

0

1

ρ0

(s̃ ) [S C̃ − C S̃] ds̃ = S(s) ∫
s

0

1

ρ0

(s̃ ) C(s̃ ) ds̃ − C(s) ∫
s

0

1

ρ0

(s̃ ) S(s̃ ) ds̃

For  to vanish at a location , the quotientD(s) sd

S(sd)

C(sd)
=

∫
sd

0

1

ρ0

S ds̃

∫
sd

0

1

ρ0

C ds̃

Adjustment by manipulation of the focusing structure

78

Dispersion function
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In an achromatic structure is at position :    .  

This means that from  to the next dipole the dispersion disappears. 

sd D(sd) = D′ (sd) = 0

sd

With    and    this condition is satisfied ifIC = ∫
sd

0

1

ρ0

C ds̃ IS = ∫
sd

0

1

ρ0

S ds̃

   and   D(sd) = 0 = − S(sd) IC + C(sd) IS D′ (sd) = 0 = − S′ (sd) IC + C′ (sd) IS

Resolving to  and  givesIC IS

   and    [C(sd) S′ (sd) − S(sd) C′ (sd)] IC = 0 [C(sd) S′ (sd) − S(sd) C′ (sd)] IS = 0,

Since , the condition for vanishing dispersion is2 = 1

    and    IC = ∫
sd

0

1

ρ0

C ds̃ = 0 IS = ∫
sd

0

1

ρ0

S ds̃ = 0.

Such a structure is called a (first order) achromat.
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Achromatic structures
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Low emittance lattices
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The focusing in the quadrupole that a particle experiences depends on its momentum.  

The tune therefore also depends on particle momentum (tune distribution in the beam) and one 
defines the so-called “chromaticity” as  

 

The natural chromaticity of a linear lattice is 

 

Chromaticity can also be considered as a gradient error of the quadrupole. 

In general, one observes a superposition of the effects of  and , which leads to a shift of 
the longitudinal and transverse position of the focal point.  

For large circular accelerators  can become very large (z.B. -150 at LEP, <-2000 at FCC-ee) 
and has to be compensated.  

Q′ = p0

dQ

dp
≈

ΔQ

Δp/p0

Q′ u = −
1

4π ∮ ds βu(s) K(s) .

Q′ D

Q′ 
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Chromaticity
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Chromaticity is compensated by sextupole magnets in 

dispersive regions. 

    and          

 

As in case of the  

quadrupole the  

normalized sextupole  

strength is 

Bx(x, y) ∼ x ⋅ y By(x, y) ∼
1

2
(x2 − y2)

 mit g′ = 6 μ0

nI

R3

m =
e

p0

g′ 
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Sextupole magnets
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Non-linear fields cause non-linear oscillations. 

The frequency of such a n oscillation depends on the amplitude. 

Particle loss due to resonances — limitations of an accelerator’s dynamic aperture. 

Observation in normalized phase space (Ellipse  Kreis):  and  

Example: iterative elimination to determine the size of a resonant island for protons  
(Monte Carlo methods and tracking)

→ X = x / βx X′ = βx x′ + αxx / βx
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Phase focusing: Particles in a circular accelerator with 

RF potential   oscillate in phase.  

One turn of the reference particle lasts . 

For particles of arbitrary energy applies 

 

The relative temporal deviation is 

 

 

V(ψ) = V0 sin ψ

T0 = L0 /v0

T =
L0 + ΔL

v0 + Δv
≈ (L0 + ΔL)

v0 − Δv

v2
0

≈
1

v2
0

(L0v0 + v0ΔL − L0Δv)

ΔT

T0

=
T − T0

T0

=
v0ΔL − L0Δv

T0v2
0

=
ΔL

L0

−
Δv

v0

= αc

Δp

p0

−
Δv

v0
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Synchrotron oscillations
RF

∆p/p = 0

∆p/p < 0

∆p/p > 0

Phasenfokussierung: In eineRF Voltage

∆p/p = 0

∆p/p < 0

∆p/p > 0

∆ψ ∝ ∆T

ψs

ψ

U0/e

V0

m Ringbeschleuniger mit RF-Potential
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With the relativistic relation  we get 

 

Since  and  the phase shift is 

 

 At  there is no phase focusing. 

For negligible radiation damping the equation for the oscillation is  with frequency 

 

For small oscillation amplitude  is constant. Using the condition for stable phase angle , the synchrotron tune 

is defined as 

Δv /v0 = (1/γ2)(Δp /p0)

ΔT

T0

= αc

Δp

p0

−
Δv

v0

= αc

Δp

p0

−
1

γ2

Δp

p0

= (αc −
1

γ2 )
Δp

p0

Δψ = 2π fRFΔT fRF = h frev

Δψ = 2πh (αc −
1

γ2 )
Δp

p0

= 2πh ( 1

γ2
tr

−
1

γ2 ) Δp

p0

= − 2πh ηc

Δp

p0

→ γ = γtr
··ψ + Ω2 ψ = 0

Ω2 = ω2
rev ( ηch

2πE0 ) e
dV(ψs)

dψ

dV /dψ U0 = e V0 sin ψs

Q2
s = ( Ω

ωrev )
2

= ( ηch

2πE0 ) e V0 cos ψs = ( ηch

2πE0 ) e2 V 2
0 − U2

0
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Synchrotron tune



Institute for Beam Physics and Technology (IBPT)Particle Accelerator Physics WS 24/25 — Beam optics and beam dynamics - 3

∮

Zeit

100 ms

γtr

γbeam

γ

time

In many (old) proton synchrotrons of middle and high energy  the point of  must be crossed.  

As phase focusing is paused at this point, the transition must be quick: “  jump” 

 Change of optics, since  with  

Reminder: Tune shift is  

Tune neutral  manipulation, if  

Example: CERN PS 

  

  

  

 

E > 5 GeV γ = γtr

γtr

→ γtr = 1/ αc αc =
1

L ∮ ds
D(s)

ρ(s)

ΔQ =
1

4π ∮ β(s)Δk(s) ds

γtr β1K1 + β2K2 = 0

→ 2 ≤ E0 ≤ 26 GeV

→ Q ≈ 6.25

→ γtr = 6.1

→ dγ /dt = 40 s−1
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Transition
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For real values of the synchrotron frequency the phase can be written as , 

where  is any phase for the ith particle at time .  

The temporal derivative of the phase is . 

Analogous to the transverse phase space,  and  describe the longitudinal motion in the phase 

space ( ).  

From  an oscillation equation can be derived for the energy 

deviation (with ):      

 Particle energy oscillates with synchrotron frequency . 

 The energy deviation is the conjugate variable to the phase .  

In general, the equation for the phase is  

ψ = ψ0 cos(Ωt + χi)

χi t = 0
·ψ = − ψ0 Ω sin(Ωt + χi)

ψ ·ψ

ψ, ·ψ
·ψ =

Δψ

Δt
=

Δψ (βc)

2π
= − βc h ηc

Δp

p0

βc = 2π /T0 = ωrev δ =
Δp

p0

= −
·ψ

hωrevηc

=
Ω ψ0

hωrevηc

sin(Ωt + χi)

→ ψs

→ ψ

··ψ +
Ω2

cos ψs
(sin(ψs + ψ) − sin ψs) = 0
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Longitudinal phase space
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The boundary line between 
stable and unstable trajectories 
in the phase space is called 
“separatrix”.  

The stable area enclosed by 
the separatrix is also called the 
"RF Bucket".
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The ratio of the available RF voltage and the energy loss per turn is defined as the "over voltage factor":  

 

Looking at the separatrix, the momentum acceptance can be written after some transformations as  

  

The momentum acceptance therefore depends on the selected RF voltage.

q = e V0 /U0 = 1/sin ψs

( Δp

p0 )
2

acc

=
eV0 sin ψs

π h |ηc | cp0

2 ( q2 − 1 − arccos
1

q )
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RF bucket and ψs
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: stationary case 

: during acceleration   

Particle “migration” between 
adjacent buckets is possible

ψs = 180o

ψs = 150o
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Adjacent buckets
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“Ghost bunches” in the SPS

a)

b)

c)

d)

CERN document server: Oliver Stein, PhD thesis
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Injection losses in LHC due to ghost bunches

Circulating part.

Inco
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Tune: number of betatron oscillations per revolution   

Condition for optical resonances:      mit    

Order of the resonance:    

Chromaticity: Change of tune for particles with energy deviation  

Dispersion function:          

The horizontal particle position at location  relative to the nominal orbit:  

Q =
N μ

2π
=

1

2π

L

∫
0

ds

β(s)
=

1

2π ∮
ds

β(s)

mQx + nQy = p m, n, p ∈ ℤ

|m | + |n |

Q′ u = −
1

4π ∮ ds βu(s) K(s)

Du(s) =
Δu

Δp/p0

s

x(s) = xβ(s) + xD(s) = xβ(s) + Dx(s)
Δp

p0
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Summary
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Momentum compaction factor  

Synchrotron oscillation: Longitudinal oscillation around reference particle 

Particle energy oscillates with synchrotron frequency 

Synchrotron tune:    

Separatrix: Boundary line between stable and unstable trajectories 

RF bucket: stable area enclosed by the separatfix

αc =
ΔL

L
/
Δp

p0

=
1

L ∮ ds
D(s)

ρ(s)

Q2
s = ( αch

2πE0 ) e2 V2
0 − U2

0
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Summary II
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