

Astroteilchenphysik - I

WS 2012/2013 Vorlesung # 06, 29.11.2012

Guido Drexlin, Institut für Experimentelle Kernphysik

kosmische Hintergrundstrahlung:

- WMAP: Messmethode & Resultate
- Multipolanalyse & Multipolspektrum
- primäre Anisotropien:
 Sachs-Wolfe Effekt
- sekundäre Anisotropien: integrierter Sachs-Wolfe Effekt

www.kit.edu

CMB - Grundlagen

COBE – Temperaturskalen

- homogenes & isotropes Universum kosmologischer Ursprung der CMB
 Ursache der Isotropie? (Horizontproblem)
- Dopplereffekt durch Bewegung mit
 v = 370 km/s relativ zum CMB-System
- CMB kein relativistisch ausgezeichnetes Bezugssystem
- primordiale Dichtefluktuationen als Saatkerne der späteren Strukturbildung
- Stärke ~10⁻⁵ entspricht Vorhersage der Inflationstheorie (aber heute $<\Delta \rho / \rho > ~1!$)

Wilkinson Microwave Anisotropy Probe

WMAP: CMB-Raumsonde der NASA (2001-2010) am L2 Lagrangepunkt Ziel: Untersuchung von CMB Temperatur-fluktuationen auf kleinen Winkelskalen

WMAP– Resultate in 5 Frequenzbändern

Kombination der Ergebnisse für untergrundkorrigierte CMB-Temperaturkarte

WMAP – Temperaturfluktuationen

CMB Temperaturverteilung nach Abzug galaktischer Störsignale WMAP 7 Jahre (2003-2010)

Vergleich von COBE und WMAP

COBE: Winkelauflösungen

v [GHz]	31.5	53	90
FWHM [°]		~ 7	

WMAP: Winkelauflösungen

v [GHz]	22	30	40	60	90
FWHM [°]	0.93	0.68	0.53	0.35	<0.23

WMAP

Multipolentwicklung

statistische Analyse der Temperaturfluktuationen ΔT um mittleres T₀

Multipolentwicklung – niedrige Multipole

Darstellung der einzelnen Multipole l = 1, 2, ..., m = -l, ..., 0, ...+l

Temperaturfluktuationen als Funktion der Multipolordnung

Multipolentwicklung – Resultate

Resultate f
ür die einzelnen Multipole

Temperaturfluktuationen als Funktion der Multipolordnung

Multipolverteilung – physikalische Ursachen

Sachs-Wolfe Effekt & Inflation

Sachs-Wolfe-Effekt : was ist Ursache der Skaleninvarianz großräumiger Fluktuationen? Mögliche Ursache: Inflation

 Inflation: exponentielles Anwachsen des Skalenparameters a(t) im Zeitraum von t = 10⁻³⁶ s bis t = 10⁻³² s um Faktor >> 10²⁶
 Einführung eines Skalarfeldes: Inflaton

Sachs-Wolfe Effekt & Inflation

Sachs-Wolfe-Effekt : was ist Ursache der Skaleninvarianz großräumiger Fluktuationen? Mögliche Ursache: Inflation

Inflation:

- Ausgleich von Anisotropien, Inhomogenitäten und Krümmung zu $\Omega_{tot} = 1$ (euklidisch), Verdünnung magnetischer Monopole (GUT)
- erste Dichtefluktuationen durch quantenmech.
 Fluktuationen des Inflatonfeldes

Vorhersage der 'Skaleninvarianz':

- Auftragung von $\ell(\ell+1)C_{\ell}$ gegen ℓ ergibt eine Konstante (Harrison-Zel dovich Spektrum)

Inflation – Einfrieren von Dichteschwankungen

QM sichtbar am CMB-Himmel

Inflation: Fluktuationen des Inflatonfeldes' werden exponentiell vergrößert & frieren ein :

t < t₁

- Gebiete stehen in kausalem Zusammenhang
- Inflation: exponentielles Wachsen von λ einer Dichtefluktuation $\Delta \rho$

$t_1 < t < t_2$

 - λ der Dichtefluktuation Δρ ist größer als der Hubbleradius R
 Fluktuation ist ´eingefroren´

- weitere Wechselwirkung ab t > t₂

Primäre & sekundäre CMB-Anisotropien

Ursprung der CMB-Temperaturanisotropien ΔT auf großen Skalen (θ>2°): zwei Effekte zu unterschiedlichen kosmischen Zeiten

Sachs-Wolfe Effekt

primäre Anisotropien durch Dichtefluktuationen $\Delta \rho$ im frühen Universum zum Zeitpunkt der CMB Entkopplung

Integrierter Sachs-Wolfe Effekt

sekundäre Anisotropien Propagation der CMB im späten, Λ -dominiertem Universum (a > 0.5) mit beschleunigter Expansion \bigcirc gedehnte Cluster & Voids: zeitabhängige Gravitationspotenziale $\Phi(t)$ Sac

ISW als Hinweis auf dunkle Energie

Regionen in kausalem Zusammenhang

T-Anisotropien auf kleinen Winkelskalen θ ~1° (ℓ ~200) sind bei t = t_{dec} in kausalem Zusammenhang (Gravitation ⇔ Strahlungsdruck)

Temperaturfluktuationen [µK] 1.Peak 2.Peak 3.Peak akustische **Oszillationen** 100 1000 Multipolordnung *l*

Abschätzung der 'kausalen' Winkelskala θ_{dec} (heute, $t_0 = 13.7$ Mrd. Jahre): Zeit der CMB-Entkopplung: $t_{dec} = 3 \times 10^5 \text{ J}$ Horizont: $2 \text{ c} \cdot \text{t}_{\text{dec}} = 6 \times 10^5 \text{ LJ}$ $(1 + z_{dec}) = 1100$ kosm. Expansion: $1100 \times 2 c + t_{dec}$ Horizont jetzt: $\theta_{dec} = \frac{2ct_{dec}(1+z)}{3 \cdot c(t_0 - t_{dec})} \approx 1^{\circ}$ Winkelskala jetzt:

akustische Oszillationen

akustische Oszillationen vom MPA

akustische Schallwellen im frühen Universum: 2 neugierige MPA-Postdocs beim Wellenreiten…

http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news_cosmic_01/news_cosmic_01-en.html

59

der Eklip

Silk Dämpfung

Silk Dämpfung: Diffusion/Strahlungsdruck der Photonen dämpft exponentiell die Weiterentwicklung von Materiefluktuationen auf den kleinsten Skalen

Lage des 1. Maximums & Geometrie

1. Maximum: Schema Lage & Geometrie

Baryonendichte

Baryonen-Photonen-Verhältnis:

wird bestimmt aus **Höhe** des ersten akustischen Peaks: mehr Baryonen & ´baryon loading´ & größere ΔT-Fluktuationen

Gravitationspotenzial:

- dunkle Materie: dominanter Beitrag aber wechselwirkungsfrei (keine Oszi.)
- baryonische Materie: subdominant, akustische Oszillationen da Plasma

Multipolverteilung & kosmolog. Parameter

