

# Astroteilchenphysik - I

WS 2012/2013 Vorlesung # 11, 17.01.2013

Guido Drexlin, Institut für Experimentelle Kernphysik

#### **Dunkle Materie**

- LHC Suche nach SUSY
- Neutralino-Annihilation: Kanäle
- astrophysikalische Orte für Suche nach Dark Matter Annihilation
- DMA 'messenger'-Teilchen:  $\gamma$ , e+,  $\overline{p}$ , v
- γ-Astronomie: CGRO und FERMI

### WIMP-Eigenschaften

#### Supersymmetrie: Fermionen Supersymmetrie: Fermionen

Superpartner: Squarks, Sleptonen, Gauginos, Higgsinos, Gravitino, ...

LSP = Lightest Supersymmetric Particle wird stabilisiert durch R-Parität (kein schneller Protonzerfall)

 $R_{p} = (-1)^{3B+L+2S}$ 

- **Sneutrinos v**: SUSY-Partner der v ( $\Omega_{CDM} < 10^{-3}$ )
- Gravitinos G: SUSY-Partner der Gravitonen
- **Neutralinos**  $\chi^0$ : Masseneigenzustände der 4 neutralen Gauginos Majorana-Fermionen (s= $\frac{1}{2}$ )



#### leichtestes Neutralino = LSP – Kandidat

Masse? Mischungsparameter? Annihilations- & Wechselwirkungsrate?

Lebensdauer (exakte Erhaltung von R<sub>p</sub>)? CDM?



 $\widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \ \widetilde{\chi}^0_3 \ \widetilde{\chi}^0_4$ 



### thermische Erzeugung:

- Teilchen sind im heißen frühen Universum im thermischen Gleichgewicht durch Wechselwirkungsprozesse
- bei Ausfriertemperatur  $T_{fr}$  wird Häufigkeit  $\Omega_i$  und free-streaming Länge  $\lambda_i$  (CDM/HDM) festgelegt
- Beispiel: LH Neutrinos  $v_i$  (HDM), LH Sneutrinos  $v_i$  Neutralinos  $\chi^0$  (CDM)

### nicht-thermische Erzeugung:

- Teilchen sind im heißen frühen Universum **nicht** im thermischen Gleichgewicht, die Wechselwirkungsprozesse sind zu schwach
- Häufigkeit  $\Omega_i$  und free-streaming Länge  $\lambda_i$  (WDM/CDM) festgelegt z.B. durch Zerfallsraten der Mutterteilchen, Oszillationsraten
- Beispiel: RH Neutrinos  $v_i$  (WDM), RH Sneutrinos  $v_i$  Axionen a (CDM)



### Neutralinos als LSP



**leichtestes Neutralino**  $\tilde{\chi}_{1}^{0}$ : Linearkombination aus Bino, Wino & Higgsinos  $\widetilde{\chi}_{1}^{0} = C_{1} \cdot \widetilde{B}^{0} + C_{2} \cdot \widetilde{W}^{0} + C_{3} \cdot \widetilde{H}_{u}^{0} + C_{4} \cdot \widetilde{H}_{d}^{0}$ Higgsino-Anteil Gaugino-Anteil - Parameter c<sub>i</sub> sind sehr stark modellabhängig: MSSM: Erwartung  $c_1 \gg c_2, c_3, c_4$  (LSP = Bino) NLSP ist das Wino, Higgsinos sind i.a. sehr schwer NUHM: c<sub>3.4</sub> dominant (Higgsino) leichtestes supersymmetrisches Neutralino  $\chi_1^0$  ist als LSP ein idealer WIMP-Kandidat für CDM (aber Massen m<sub>1/2</sub> < 1.5 TeV erforderlich!) **Eigenschaften:** neutral, nur schwach wechselwirkend, Fermion mit  $s = \frac{1}{2}$ kosmologisch stabil (da R<sub>p</sub>-Erhaltung), Majorana-artig: Neutralino ist sein eigenes Antiteilchen schwer (TeV-Skala), daher nicht-relativistisch bei T<sub>fr</sub>



### SM ohne Supersymmetrie





### LHC - Large Hadron Collider

p-p Kollisionen bei √s = 14 TeV Schwerpunktsenergie Datennahme seit Frühjahr 2010 bei E<sub>p</sub> = 3.5 (4.0) TeV Ziele: - Nachweis des Higgs-Bosons





## LHC - Large Hadron Collider



p-p Kollisionen bei √s = 14 TeV Schwerpunktsenergie
 Datennahme seit Frühjahr 2010 bei E<sub>p</sub> = 3.5 (4.0) TeV
 SM-Higgs-Boson mit Masse M<sub>H</sub> ~ 125 GeV ☑

- M<sub>H</sub> ~ 125 GeV erfordert starkes fine-tuning für SUSY!





KP

### LHC - Large Hadron Collider



 p-p Kollisionen bei √s = 14 TeV Schwerpunktsenergie Datennahme seit Frühjahr 2010 bei E<sub>p</sub> = 3.5 (4.0) TeV
 SM-Higgs-Boson mit Masse M<sub>H</sub> ~ 125 GeV ☑

- M<sub>H</sub> ~ 125 GeV erfordert starkes fine-tuning für SUSY!





#### **Runners-Up**

This year's runners-up for Breakthrough of the Year underscore feats in engineering, genetics, and other fields that promise to change the course of science.



# LHC – Protonwechselwirkungen

- p-p Kollisionen bei √s = 14 TeV Schwerpunktsenergie Datennahme seit Frühjahr 2010 bei E<sub>p</sub> = 3.5 (4.0) TeV
   SM-Higgs-Boson mit Masse M<sub>H</sub> ~ 125 GeV ☑
  - Suche nach Signaturen von SUSY: Neutralinos  $\chi^0$



### 7 TeV 7 TeV р Jet Positron Neutralino fehlende Kollisions-Energie Elektron punkt

### Neutralino-Signatur am LHC:

- fehlende Energie
- fehlender Transversalimpuls
- geladene Leptonen aus Neutralino-Zerfällen

### 3-Körper Zerfälle von Neutralinos

 $\widetilde{\chi}_1^0$ 



Zerfall des zweitleichtesten Neutralinos  $\chi_2^0$  (NLSP) in das stabile leichteste Neutralino  $\chi_1^0$  (LSP):  $\chi_2^0 \rightarrow \chi_1^0 + \ell^{\pm} + \ell^{\mp}$ 



- $\widetilde{\chi}_{2}^{0}$   $h^{0} A H^{0}$  b, ...
- h<sub>0</sub>: leichtes skalares Higgs
  H<sub>0</sub>: schweres skalares Higgs

õ

b

A : pseudoskalares Higgs

 $\widetilde{\chi}_{2}^{0}$ 

# LHC – CMS Entdeckungspotenzial



Aktuelle SUSY Limits und cMSSM-Analysen:

- $\sqrt{s} = 7(8)$  TeV : keine Evidenz für SUSY Teilchen
- LHC-Limits: Gauginomasse  $m_{\frac{1}{2}} > 0.5$  TeV
  - (ab  $m_{1/2} > 1.5$  TeV wird Chargino  $\chi^{\pm}$  zum LSP!)
- verbessertes SUSY-Entdeckungspotenzial nach LHC Upgrade @ 14 TeV



### 4.2 Indirekte Nachweismethoden



 indirekter CDM-Nachweis durch Beobachtung sekundärer Teilchen aus WIMP-Annihilationsprozessen in der lokalen Gruppe (Galaxis)
 - Gammas (γ), Neutrinos (ν), Antiprotonen (p) & Positronen (e<sup>+</sup>)



### WIMP Annihilation: Modellierung



 Nachweis der WIMP-Annihilation erfordert präzise Modellierung von a) χ<sup>0</sup>-Signal: Teilchenphysik (Zerfallsmoden) & Astrophysik (Halomodell)



### WIMP Annihilation: Modellierung



 Nachweis der WIMP-Annihilation erfordert präzise Modellierung von b) astrophysikalischem Untergrund (Quellen, Untergrundmechanismus)



### WIMP Annihilation: Modellierung



Nachweis der WIMP-Annihilation erfordert präzise Modellierung von c) Propagation (p & e<sup>+</sup>: B-Felder) und d) Nachweis-Effizienz (GeV-TeV Skala)



# Neutralino Annihilationsprozesse





### Neutralino Annihilationsprozesse



WIMP-Annihilationsquerschnitte sind stark abhängig vom verwendeten SUSY-Modell und den gewählten Parametern: viele mögliche Feynman-Diagramme und Austauschteilchen



### Neutralino Annihilationsprozesse





## WIMP Annihilation: Erzeugungsorte



WIMP-Annihilationsrate in DM-Halos: Γ<sub>Ann</sub> ~ ρ<sup>2</sup><sub>CDM</sub> Suche in Bereichen mit DM-Überdichten

- galaktisches Zentrum
- sub-Halo-Zentren: Zwerggalaxien, ...



Anzahl N<sub>Ann</sub> von WIMP-Annihilationen in Halo (pro Zeit/Volumen-Einheit):





 $\begin{array}{ll} \rho_{\text{CMD}} & aus \ \text{NFW-Profil des CDM-Halos} \\ \nu & \text{WIMP-Geschwindigkeitsprofil im Halo} \\ \sigma_{\text{Ann}} & \text{Wq. aus theoretischen Berechnungen} \end{array}$ 

### WIMP Annihilation: Sichtlinie

energieabhängiger Fluss  $\Phi_{AP,i}$  von WIMP-Annihilationsprodukten ( $\gamma$ ,  $\nu$ ) ergibt sich durch Integration entlang der Sichtlinie:

$$\Phi_{AP,i}(E) \sim \left\langle \sigma_{Ann} \cdot v \right\rangle \cdot \frac{1}{4\pi \ m_{CDM}^2} \cdot \frac{dN_i}{dE} \int_{Sichtlinie} \rho^2 ds \qquad \text{dN/dE: Energie-Spektrum}$$



### WIMP Annihilation: Raumwinkel und MC





$$\Phi_{AP,i}(E,\Delta\Omega) \approx 5.6 \times 10^{-12} \, \frac{dNi}{dE} \cdot \frac{\left\langle \sigma_{Ann} \cdot v \right\rangle}{1 \, pb} \cdot \left(\frac{1 \, TeV}{m_{CDM}}\right)^2 \Delta\Omega \quad cm^{-2} s^{-1} \qquad \Delta\Omega: \text{ Raumwinkel}$$



# Indirekter WIMP Nachweis: Experimente

#### Gammaquanten:

- zeigen zurück zur Quelle
- kein Energieverlust
- keine Ablenkung im B-Feld
- Energieverteilung bis  $m(\chi)$
- Erdatmosphäre schirmt  $\gamma$ 's ab: Satelliten (GeV) & Cerenkov-Teleskope (TeV)

### Antiprotonen, Positronen:

- Ablenkung im galaktischen B-Feld
- Energieverluste (e+: lokale Umgebung)
- wenig Untergrund (Antiprotonen) & klares Signal (e/m)
- Erdatmosphäre schirmt p und et ab: Satelliten mit B-Feld (GeV)

**WIMP-Annihilation** im galaktischen Zentrum, in CDM sub-Halos

 $\chi_1^0 + \chi_1^0 \rightarrow \gamma, \overline{p}, e^+, \nu, \dots$ 

### Neutrinos:

- zeigen zurück zur Quelle

- auch aus dichten Quellen (Sonne) - kein Energieverlust

- keine Ablenkung im B-Feld

- nur schwache Wechselwirkung



Neutrino-Teleskope (TeV)



### Indirekter WIMP Nachweis: Experimente





### Indirekter WIMP Nachweis – Gammas





### Gammas aus WIMP Annihilationen



■ Neutralino-Annihilation  $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow q\bar{q}^-$ : es entstehen im Rahmen der Quark-Fragmentierung ~30-40 Gammas (typische Energie: GeV-TeV) das Spektrum der Gammas ist abhängig vom Annihilationskanal (→ bb, ZZ)



G. Drexlin – VL11

- Zerfallskanäle abhängig von M(χ<sup>0</sup>) und χ<sup>0</sup>-Flavouranteilen (Bino, Wino, Higgsino)
- χ<sup>0</sup>-Zerfälle in leichte Quarks u,d,...
  sind generell Helizitäts-unterdrückt
- χ<sup>0</sup>χ<sup>0</sup> → γγ Line ist stark unterdrückt
  ♦ goldenes Signal im GeV/TeV Bereich: mono-energetische

 $\gamma$ -Linie bei  $\mathbf{E}_{\gamma} = \mathbf{m}(\chi^0)$ 



26

### WIMP Annihilation: Gamma-Untergrund

### astrophysikalische Untergrundprozesse für $\gamma$ 's

- entstehen bei Erzeugung und Reaktionen der kosmischen Strahlung
- zahlreiche galaktische Quellen:
  - a) SN-Schockwellen in SNR (Supernova-Remnant)
  - b) Pulsarwinde
  - c) Prozesse im interstellaren Medium (ISM),
- extragalaktisch
  - a) aktive galaktische Kerne

SN1006 im γ-Licht











### Gammas aus kosmischer Strahlung – I



astrophysikalischer Untergrund zur WIMP-Annihilation in Gammas: Wechselwirkungen der hochenergetischen kosmischen Strahlung

Erzeugung hochenergetischer Gammas: man unterscheidet zwei grundlegende Erzeugungsmechanismen:

- Elektronwechselwirkungen Elektronen aus Pulsarwinden
- Hadronische Wechselwirkungen

### Elektron-Wechselwirkungen:

- inverser Comptoneffekt
- Bremsstrahlung

Beschleunigung von e<sup>-</sup> in einem Pulsarwind-Nebel





### Gammas aus Hadron-Wechselwirkungen



#### Hadron-Wechselwirkungen:

- Protonen werden von der Schockwelle eines SNR (Supernova-Überrest) beschleunigt & erzeugen beim Auftreffen auf das ISM viele Pionen ( $\pi^{\pm}$ ,  $\pi^{0}$ )



#### Pionzerfall



Proton-Proton-Stöße: Erzeugung neutraler Pionen Gammas aus  $\pi^0$ -Zerfall  $\pi^0 \rightarrow \gamma + \gamma$ 

### Astrophysikalische diffuse Gammaquellen



Modellierung des hadronischen π<sup>0</sup>-Beitrags und Elektron-Reaktionen (innere Galaxis)





### Gammasatelliten – CGRO/EGRET



#### Compton Gamma Ray Observatory (CGRO)

EGRET – Energetic Gamma Ray Experiment Telescope Himmelskarte im hochenergetischer Gamma-Bereich: Suche nach Punktquellen/ Analyse der diffusen Strahlung (4-jährige Messphase)



# EGRET: Gamma-Überschuss



E(γ) > 1 GeV: deutlicher Überschuss hochenergetischer
 Ereignisse im Vergleich zum erwarteten Spektrum (1997)



### EGRET Gamma-Überschuss

- 'konventionelle' Erklärung: systematischer Effekt in der EGRET-Energiekalibration von hochenergetischen Gammas
- ´exotische´ Erklärung:
  Überschuss entsteht durch
  WIMP-Annihilationsprozesse
  (WIM de Boer et al.)

#### FERMI:

Überschuss bei EGRET durch fehlerhafte Energiekalibration!

### Fermi-Gamma-Observatorium

### Fermi-γ-Observatorium

Nachfolger von CGRO mit vielen wesentlichen Verbesserungen:

- größere effektive Fläche
- bessere Winkelauflösung
- höhere γ–Energien

#### Fermi-Parameter

| Datennahme         | seit Mitte 2008     |
|--------------------|---------------------|
| Flughöhe           | 560 km              |
| Dimensionen        | 2.8 m(h) × 2.5 m(Ø) |
| Gewicht            | 4.3 t               |
| γ-Energieintervall | 20 MeV – 300 GeV    |
| effektive Fläche   | 1 m²                |
| Winkelauflösung    | ~ 1´                |

![](_page_32_Figure_8.jpeg)

### Fermi – Large Area Telescope LAT

![](_page_33_Picture_1.jpeg)

- LAT : Raumwinkel des deckt d $\Omega$  ~ 20% des Himmels zu jedem Zeitpunkt ab,
- der gesamte Himmel wird alle 3 Stunden abgedeckt
- 16 einzelne Türme

![](_page_33_Figure_5.jpeg)

### Fermi – Suche nach WIMP Annihilation

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

wesentlich besserer Sensitivität (Faktor ~30)

- bessere Auflösungen  $\Delta \theta$ ,  $\Delta E$  und Zählrate
- Suche nach **'goldenem WIMP Signal**'
  - $\stackrel{\text{\tiny $\forall$}}{\Rightarrow} \gamma$ -Liniensignal bei M(χ<sup>0</sup>), aus  $\chi^0 \chi^0 \rightarrow \gamma \gamma$

**35** 17.01.2013 G. Drexlin – VL11

### Fermi – Resultate nach 3 Jahren

![](_page_35_Picture_1.jpeg)

drei Jahre Datennahme mit Fermi – Himmelskarte im multi-GeV Gammalicht Energiespektrum zeigt keine Hinweise auf DM-Annihilation

![](_page_35_Picture_3.jpeg)