

Astroteilchenphysik - I

WS 2012/2013 Vorlesung # 13, 24.01.2013

Guido Drexlin, Institut für Experimentelle Kernphysik

Dunkle Materie – indirekte Nachweismethoden

- Galaktisches Zentrum: H.E.S.S.
- Positronen & Antiprotonen
- PAMELA
- AMS-02
- WIMP Annihilationen in der Sonne:
 v-Teleskop ICECUBE mit Deep Core

ΊMΡ

Nachweis der DM-Annihilation: γ , ν , e⁺, \bar{p}

Gammaastronomie im GeV-Bereich

Fermi: Suche nach γ-Signal aus DMA aus galaktischen Zentrum

Daten

Goldenes Signal für DMA : γ-Linie (GeV)

DMA

Fermi – Resultate DM-Annihilation

Aktuelle Analysen zu γ-Überschuss aus dem galaktischen Zentrum

4/2012: 'off-site' Analyse (C. Weniger)

- mögliche Hinweise auf DMA γ -Linie Fit ergibt $E_{\gamma} \approx (130 \pm 2 \pm 10)$ GeV & ~50 Ereignisse ($\equiv 4.64 \sigma$ Signifikanz, = 3.2 σ für "*look elsewhere*" Effekt),

5/2012: offizielle Analyse (FERMI)

- <u>keine</u> Hinweise auf γ -Linie im Intervall E_{γ} = 7 – 200 GeV power law Spektrum mit γ = 2.438 95% CL. Obergrenzen für $\sigma_{Ann} \cdot v < (0.03 - 4.6) \cdot 10^{-27} \text{ cm}^3 \text{ s}^{-1}$

Atmosphärische Cherenkov Teleskope

- Bodengebundene Gamma-Astronomie im TeV-Bereich mit IACTs: Imaging Atmospheric Cherenkov Telescope Suche nach TeV-Gammas aus DMA im galaktischen Zentrum (GC)
 - Reichweite von TeV- γ 's: ~ 100 Mpc 1Gpc (o.k. für χ^0 -Annihilation)
 - Teleskopbetrieb: nur in klaren mondlosen Nächten (~ 1000 h / Jahr)

Atmosphärische Cherenkov Teleskope

- Bodengebundene Gamma-Astronomie im TeV-Bereich mit IACTs:
 - TeV-Gammas initiieren Luftschauer-Kaskaden mit geladenen Teilchen
 - **Kaskadenprozess**: $\gamma \rightarrow e^+e^-$ (Paarbildung) $\rightarrow \gamma$ (Bremsstrahlung) $\rightarrow \dots$
 - relativistische e⁺e⁻ emittieren Cherenkovphotonen in engem Kegel (~1°)

TeV – Gamma-Observatorien

WIMP Annihilation: IACTs & Satelliten

IACT Sensitivität ideal für hohe γ-Energien: 10 GeV - multi-TeV-Bereich

H.E.S.S. – galaktisches Zentrum im TeV Licht

HESS beobachtet ein klares TeV γ–Signal vom Ort des galakt. Zentrums Sgr A*

nach Abzug dieser Quelle werden Regionen mit TeV-γ's sichtbar: die γ's entstehen durch Wechselwirkungen von Protonen & Molekülwolken

H.E.S.S. – galaktisches Zentrum im TeV Licht

\blacksquare E_y > 1 TeV : deutlicher **Überschuss** gegenüber Modellerwartung

- Erklärung: in innersten 100 pc des galaktischen Zentrums erhöhte Rate der kosmischen Strahlung durch:
 - Supernova-Explosionen
 - SMBHs erhöhte Aktivität des SMBHs
- HESS: Überschuss kein Signal für Annihilation eines schweren multi-TeV WIMPs in Gammas
 - schwierige Interpretation durch astrophysikalische Modellierung, zahlreiche eng benachbarte Quellen (SNRs)

DMA – Nachweis: Unsicherheiten

Astrophysikalische und teilchenphysikalische Unsicherheiten bei DMA:

DM-Haloprofil (sub-Halos)

ASTRO

- Untergrundquellen (Pulsare, SNR,...)

SUSY

WIMP-Eigenschaften: - Masse - Flavour (B⁰, W⁰)

- σ_{Ann} · V
- Zerfallskanäle

DM-Propagation (Energieverlust, B-Felder)

DMA-Quellen: Einfluss des DM-Haloprofils

WIMP-Dichteprofil im inneren 1 kpc Bereich ist stark modellabhängig!

- Gammas: 1D-Dichteprofil wird integriert entlang Sichtlinie $\int \rho_{DM}^2 ds$
- e+/p: Diffusionsprozesse, aber DMA-Teilchenflüsse

variieren noch immer um ~ 1 Größenordnung

Positronen & Antiprotonen: Modellierung

Geladene Teilchen als DMA-Messenger: Positronen (e⁺) & Antiprotonen (p)

Propagationseffekte

- GALPROP-Code zum Teilchentransport vom DMA-Ort bis zum Nachweis (Diffusion)
- a) galaktische Magnetfelder (Modellierung) Ablenkung (Lorenzkraft) Zyklotronradius (galakt. Scheibe)
- b) Energieverlustprozesse
 - e⁺: inverse Comptonstreuung (CMB, Licht)
 - Synchrotronstrahlung (B-Feld)
 - **p**: nur geringe Verluste
 - isotrope Richtungsverteilung e⁺ & p e⁺ nur aus der lokalen Umgebung

Positronen: DMA und Untergrund

Positronen – Signal & Untergrund, Messung: Positronenanteil e+/(e+ + e-)

Antiprotonen: DMA und Untergrund

Antiprotronen – Signal & Untergrund, Messung: spektrale Form > 10 GeV

PAMELA Experiment

a <u>Payload for Antimatter Matter Exploration</u> and Light-nuclei <u>A</u>strophysics

Satelliten-Experiment (I, D, RU, S) zur Messung der Energiespektren von Positronen & Antiprotonen, Messungen seit Juli 2006

Teilchen	Energiebereich	Events (3J)
Antiprotonen	80 MeV - 190 GeV	~ 104
Positronen	50 MeV - 270 GeV	~ 10 ⁵
Elektronen	< 400 GeV	~ 10 ⁶
Protonen	< 700 GeV	~ 10 ⁸
e+/e ⁻ Verhältnis	< 2 TeV	
Kerne (bis Z=6)	< 200 GeV/Nukleon	10 ⁴ - 10 ⁷
Isotope (D, ³ He)	< 1 GeV/Nukleon	
Antikerne	~ 3×10 ⁻⁸ Anti-He/He	

PAMELA – Positronenüberschuss

PAMELA Resultate: starker Positronenüberschuss - mögliche Interpretation: Evidenz für DMA??

Rate impliziert großes $\sigma_{Ann} \cdot v > 10^{-24} \text{ cm}^3 \text{ s}^{-1}$ (10² zu hoch für $\Omega_{DM} \sim 0.2$) kein analoger Überschuss bei p !

 - 'konventionelles' Szenarium:
 - e⁺e⁻ - Paar-Erzeugung bei γ-Pulsaren

AMS-02: Alpha Magnetic Spectrometer

AMS02: Suche nach WIMP-Annihilation: Antiprotonen, e⁺, y

- Suche nach Antimaterie (Anti-Deuteronen, Anti-Helium,...)
- Messung der kosmischen Strahlung:
 - Energieverteilung & chem. Zusammensetzung bis 1 TeV
 - absoluter Fluss (z.B. wichtig für atmosphärische Neutrinos, Propagation und Einschluss der CR, interstellares Medium)

AMS-02: Experimentaufbau

Bestimmung von Impuls p, Energie E, Ladung Q, Lorentz-γ, v_{rel}

AMS-02: experimentelle Sensitivität

- AMS-02: wesentlich verbesserte Sensitivität bei hohen Energien
 - generisches Problem bei Nachweis von DMA: Unterscheidung SUSY-Signal vs. astrophysikalischer Untergrund (Pulsare)

WIMP Annihilation in der Sonne

WIMP-Einfang in der Sonne: χ⁰ verlieren durch Streuprozesse an H-Atomen kinetische Energie & Einfang im solaren Gravitationspotenzial

spinabhängige Wechselwirkung: WIMP Streuung an H-Atomen

durch Streuung: V_{WIMP} < V_{Entweichen} SWIMPS sinken ins Zentrum der Sonne

WIMP-Annihilation im Sonneninnern

Aufbau eines Gleichgewichts zwischen Einfangrate R_c und Annihilationsrate R_A

WIMP Annihilation - Neutrinos

Signatur der WIMP Annihilation im Sonneninnern: Erzeugung hochenergetischer Neutrinos mit Energien im GeV-Bereich (pp-Fusion: Neutrinos im MeV-Bereich!) Nachweis von GeV Neutrinos in einem Neutrinoteleskop mit ~1 km³ Nachweisvolumen (IceCube, km3net)

v-Astronomie

mit Ice-Cube

IceCube an der Südpolstation

IceCube Neutrinoteleskop

IceCube Neutrinoteleskop

WIMP Annihilation & Neutrinoteleskope

GeV-Neutrinos verlieren beim Verlassen der Sonne Energie! Wahrscheinlichkeit P, die Sonne ohne Wechselwirkung zu verlassen:

χ

IceCube – Deep Core Erweiterung

Deep Core: IceCube-Erweiterung für verbesserte Suche nach DMA aus Sonne v_µ im Energiebereich 10 GeV – 1 TeV
 6 neue Strings mit je 40 PMTs

Indirekte Suche nach CDM - Aussichten

Fazit indirekter DM-Nachweis:

- bisher kein eindeutiger Nachweis
- hoher astrophysikalischer Untergrund
- Gammas: Fermi & Cherenkov-Teleskope
- geladene Teilchen: AMS-02 & Pamela
- zukünftig: multi-messenger Studien (γ + \overline{p} +e+)
- zukünftig: bessere Modellierung mit GALPROP
- Astrophysik: Kosmische Strahlung (Quellen, Transport, lokale Phänomene) – Modellierung!
- Teilchenphysik: SUSY-Parameterbereich für Neutralinos wird durch LHC (stark) eingegrenzt

