

Astroteilchenphysik - I

WS 2012/2013 Vorlesung # 14, 07.02.2013

Guido Drexlin, Institut für Experimentelle Kernphysik

direkte Nachweismethoden

- Experimentelle Nachweismethoden:
 1-Parameter & 2-Parameter Detektoren
- Szintillatoren: DAMA/Libra, XMASS
- Kryobolometer: CDMS, Edelweiss
- Edelgasdetektoren: Messprinzip, XENON, DARWIN

Direkter Nachweis der dunklen Materie

 Kinematik: Rückstoßenergie < 100 keV

 Modulation durch Erdbahnbewegung ~ 5 %
 kohärente skalare Streuung: WIMP-Halo Modell
 σ_{SI} ~ A² · F²(E_R) , Formfaktor F für großen Impulstransfer q / Kernradius R_i wichtig: sehr kleine Schwelle für E_R ~ wenige keV
 spinabhängige Streuung: ~J, ungepaartes Nukleon

Untergrundreduktion – I

- **Pb/Cu-Abschirmung** gegen natürlichen Untergrund ²³²Th, ²³⁸U, ⁴⁰K, Radon
- Gammas & Elektronen, Neutronen & Kernrückstoß
- Untergrundreduktion II
 - Abschirmung gegen Myonen in Untergrundlabor
 Tiefe: 2500 m.w.e. → 6000 m.w.e.
 LNGS, LSM, SNOIab, DUSEL, Kamioka,...

Dark-matter search goes

KIT-IFKF

Europäische Untergrundlabore

Vergleich von Untergrundlaboren in Europa (ILIAS Studie der EU): Abschirmung gegen kosmische Myonen

Gran Sasso Untergrundlabor LNGS

LNGS: größtes Untergrundlabor weltweit mit einer Fläche A = 17.300 m² unterteilt in 3 große Experimentierhallen (A,B,C), Myonrate: 3 · 10⁻⁴ m²/s

Untergrundreduktion

Separation der WIMP-Kern Streuung im keV-Bereich vom Untergrund durch:

äußere Abschirmung

passiv: Cu,Pb gegen γ´s PE gegen Neutronen aktiv: äußerer μ-Veto

Pb

Selbst-Abschirmung

Beschränkung auf den innersten Bereich, keine Oberflächeneffekte ⇒ fiducial volume

LXe-
fiducial
olume

Teilchendiskriminierung

Ereignistopologie (Hits, Zeitverhalten, Energie): Licht-Wärme-Ionisation

Nachweismethoden – 1 Messparameter

Nachweismethoden – 2 Messparameter

Vorteile:

- große Target-Masse: M = 100 kg 1 Tonne
 - \Box Suche nach Modulation mit T = 1 Jahr
 - Selbstabsorption des externen Untergrunds
- bekannte Detektor-Technologie: anorganisch (NaJ, CsJ), flüssige Edelgase (LXe)
- gute intrinsische Reinheit & hohe Lichtausbeute
- sensitiv auf spin-abhängige Wechselwirkung:
 ²³Na, ¹²⁷I, ¹³¹Xe
- lange, kontinuierliche Messzeiten möglich (viele Jahre)

Nachteile:

- nur moderate Untergrund-Diskriminierung
 - d.h. Separation von Kernrückstößen & Elektronen
- begrenzte Ortsauflösung (Segmentierung)

 DArk MAtter Experiment: NaJ Szintillationsdetektor-Array
 Target: 9×9.7 kg hochreine NaJ Kristalle (Szintillatoren) Schwelle E_{thres}= 2 keV_{ee} (= 20 keV Rückstoßenergie ²³Na)
 Auslese: 2 PMT´s/Kristall, Lichtausbeute 5-7 p.e./keV
 Untergrund: sehr geringe NaJ Eigenaktivität, Abschirmung : Beton, Paraffin, 15 cm Boliden-Pb, 10 cm Cu, % 1-2 Ereignisse/keV/kg/Tag

DAMA – jährliche Modulation

- Karlsruhe Institute of Technology
- 7 Jahre Datennahme (107 731 kg-Tage) von Januar 1995 Juli 2002
 Modulation der Ereignisrate mit T = 1a & erwarteter Phase (t₀ = 2. Juni)
 - Signal nur knapp oberhalb der *hardware* Schwelle bei E = 2 6 keV
 - keine Modulation bei E = 6-14 keV, statistische Signifikanz (CL) = 6.3 σ
 - Interpretation von DAMA als Evidenz für direkten WIMP-Nachweis (??)

DAMA/LIBRA

LIBRA - Large Sodium Iodide Bulk for RAre processes Nachfolge-Experiment von DAMA

- 250 kg NaJ (Tl) aus
25 Kristallen (5 × 5 Matrix)

Messungen DAMA/Libra

- Datennahme seit 9/2003

Resultate

- Bestätigung des DAMA Modulationssignals: gleiche Amplitude & Phasenrelation
- Gesamtexposition (2008) Masse Jahre = 0.82 t Jahre statistische Signifikanz 8.2 σ für Signal mit jährlicher Modulation
- favorisierter WIMP Parameterbereich (M_{χ} , σ) wird aber vom XENON Experiment ausgeschlossen (auch für sehr leichte WIMPs!)

Modulationssignal: Ereignisse/Tag/kg/keV

Szintillation – XMASS

 XMASS: Xenon detector for Weakly Interacting MASSive Particles Experiment in der Kamioka Mine in den japanischen Alpen
 Ziel: schrittweise Vergrößerung der Xenon-Targetmasse, damit verbesserte Selbstabsorption des Untergrunds durch LXe (10⁻⁴ Ereignisse/kg/keV/Tag)
 Technik: UV-Szintillationslicht in flüssig-Xenon (LXe) (T = 165 K) bei λ = 175 nm, Rayleigh-Streuung limitiert Ortsauflösung
 Status: Vorbereitung der Messungen mit 800 kg Detektor

Kryogene Experimente - Überblick

kryogene Tieftemperatur-Bolometer im mK Bereich (CRESST, CDMS,...)

Vorteile:

- gute Kernrückstoß-Sensitivität (Phononen)
- relativ niedrige Energieschwelle
- gute Energieauflösung (~150 eV @ 6 keV)
- verschiedene Targetmaterialien (Ge, Si, CaWO₄)
- Kombination Photonen mit Ionisation & Szintillation: gute Abtrennung von Gammas & Elektronen
- modularer Aufbau (
 skalierbar & sequentiell erweiterbar, ggfs. Austausch von Einzeldetektoren)

Nachteile:

- aufwändige mK-Kryotechnik (Aufbau, Messen)
- sehr beschränkte Targetmasse (< 30 kg bisher)
- modularer Aufbau (sroße innere Oberfläche)

WIMP Nachweis mit Kryo-Bolometer

Meßprinzip eines kryogenen Bolometers (Kalorimeters):

- Energiedeposition E_R des Rückstoßkerns aus der χ^0 -Streuung führt zu kleiner, aber messbarer Temperaturerhöhung ΔT im Absorber
- Absorber (Ge, Si, CaWO₄) mit Masse M ~ 300 g bei T₀ = 10-20 mK
- Thermometer zur Messung des Temperaturanstiegs ΔT im Absorber
- Wärmebad (schwache Ankopplung) zur Rückführung des Absorbers auf To

 $\Delta T = \frac{E_R}{V \cdot C_V}$ wichtig: kleine spezifische Wärmekapazität C_v des Absorbers \$\science\$ begrenzt die Masse M eines kryogenen Bolometers (~ 1kg)

Bolometer bei mK Temperaturen

Betriebstemperaturen im mK Bereich erfordern ³He/⁴He Mischungs-Kryostate

Bolometerbetrieb im mK Bereich: Minimierung der spezifischen Wärme C_v bei T« T_c : Debye sches Gesetz für C_v $C_V \approx 1 \cdot 10^{18} \frac{keV}{cm^3 K} \left(\frac{T}{T_{\odot}}\right)^3$ T_{Θ} = materialspezifische Debye-Temperatur (Ge: 374 K, Si: 645 K) 250 g CaWO₄ Kristall: Wärmekapazität T = 1 K $C = 130 MeV / \mu K$ T = 25 mK C = 2 keV / μK

Beispiel: 100 g Ge-Detektor bei 10 mK, $E_R = 1 \text{ keV} \rightarrow \Delta T = 1 \mu K$

Kryo-Bolometer: Phononen

Quasi-ballistische Phononen 'zerfallen' in thermische Phononen

Energie für 1 Elektron-Loch Paar $\Delta E \sim 2.9 \text{ eV}$ (Ge-Bandlücke: 0.9 eV)

Vergleich Phononen – Ionisation in Germanium:

- elementare Phononen-Anregung $\Delta E < 1 \text{ meV}$

(Umrechnungsfaktor 1K ~ 0.1 meV):

-

KIT-IEKP

Kryo-Bolometer: Thermistoren

Thermistor: misst µK Temperaturanstieg des Absorbers (Phononen aus Absorber koppeln in Thermistor ein), Ziel: kleines $\Delta T \rightarrow \text{großes } \Delta R$

thermische Phononen

langsames Signal, Auslese durch hochreine, speziell dotierte **Halbleitersensoren** : $\log R(T) \sim T^{-\frac{1}{2}}$ NTD-Germanium (**N**eutron **T**ransmutation **D**oped) temperaturabhängiger Widerstand R(T) des Sensors, hochohmig: NTD-Ge bei 30 mK: R ~ $10^{6} \Omega$

ballistische Phononen

 (8×6) mm², aufgedampft, T_c = 10 mK

schnelles Signal, Auslese durch supraleitende Sensoren: TES (Transition Edge Sensor), dünner supraleitender Film (Aufbruch Cooper-Paare) Ubergang supraleitend-normalleitend, $T_0 = 10-50$ mK supraleitend. Phasenübergangs-Thermometer SPT **niederohmig**: $R \sim m\Omega$

- TES-Auslese erfolgt durch SQUIDs

Phononen-Auslese: TES

TES-Thermistoren zur Auslese ballistischer Phononen: Betrieb in der Mitte des engen, nur wenige mK breiten Temperaturbereichs des Übergangs zwischen dem supra- und dem normalleitendem Zustand betrieben damit: kleine Temperaturänderung ΔT 5 große Widerstands-Änderung ΔR

Kryoexperimente – Szintillation & Ionisation

WIMP Streuung – Teilchendiskrimination

Diskrimination (Trennung) von Signal und Untergrund

- WIMPs: Rückstoß des schweren Target-Kerns nach Streuung
- Gammas (Elektronen): Rückstoß eines leichten atomaren Elektrons
 - Serhältnis des Ladungs- (Licht-) Signals zum Phononsignal

Kryobolometer - Teilchendiskrimination

- Ge-Bolometer mit Ladungs- und Phonon-Signal
 - gute Abtrennung des Kern-Rückstoßes von e⁻, γ 's bzw. α 's
 - **Ionisations-Quenching**: Ladungssignal des Ge-Kerns ist auf ~ 1/3 reduziert durch hohe spezifische Ionisationsdichte dE/dX

CRESST-II Experiment

CRESST: Cryogenic Rare Event Search with Superconducting Thermometers

- Ort: Halle A im LNGS (Gran Sasso Labor),
- Prinzip: Szintillation und Phononen (Teilchendiskrimination)
- einzelne CaWO₄ Kristalle (Kalzium-Wolframat) mit Masse M = 300 g
- WIMP-Streuung: Kernrückstöße an ¹⁸⁴W, ⁴⁰Ca, ¹⁶O

CRESST – II : Ausbau auf 10 kg Masse

CRESST-II Resultate

- 17 Module, verbesserte Abschirmung mit µ-Veto
- Resultate 2011: Analyse von 8 Detektoren (730 kg Tage) 67 Ereignisse verbeiben in Signalregion (¹⁸⁴W, ⁴⁰Ca, ¹⁶O) ~50% der Ereignisse nicht durch Untergrund erklärbar systematische Effekte (Signatur von 10-20 GeV WIMPs?)

40

LSM – Laboratoire Souterrain de Modane

EDELWEISS – Experiment

Expérience pour détecter les WIMPs en Site Souterrain französisch-deutsches Experiment im LSM mit Ge-/Si-Bolometern

- 2000-2003: Edelweiss-I mit M = 1 kg (3 Detektoren)
- 2008-2010: Edelweiss-II mit M = 4 kg (10 Detektoren, je 400 g)
- 2011-2014: Edelweiss-III mit M = 32 kg (40 Detektoren, je 800 g)

EDELWEISS - Detektoren

Ge – Bolometer Phase-II (m = 320 g, Ø = 70 mm, h = 20 mm) Nachweis: Phonon-Signal + Ionisation

- Phononsignal: NTD-Thermistor mit $T_0 = 17 \text{ mK}$ Nb/Si-Thermistor (z-Auflösung)
- Ionisation: Aluminium-Elektroden ($\Delta V = 3 7 V$)

2 Bereiche: Zentrum & Schutzring

800g Detektor

EDELWEISS – II Resultate, EURECA

Resultate von EDELWEISS-II:

- 10 Kryobolometer (5 · 360 g, 5 · 410 g), ´fiducial mass´ ~ 160 g je Detektor
- Exposition: 384 kg Tage (effektiv), Zeitraum: April 2009 Mai 2010
- WIMP-Suche ab $E_R > 20$ keV, 5 WIMP Kandidaten, < 3 Ereignisse von Untergrundquellen erwartet, kein statistisch signifikantes WIMP Signal

CDMS – Cryogenic Dark Matter Search

Kryo-Bolometer in der Soudan-Mine in Nord-Minnesota (2000 m.w.e) Absorber: 250 g Germanium (Ø=7.5 cm, h=1 cm) bzw. 100 g Si-Kristalle

ZIP-Detektortechnik:

Z-sensitive Ionisation and Phonon mediated detector Signale: nur 'ballistische' Phononen (4 × 1036 TES: AI und W) Phonon-Timing zur Diskrimination gegen Oberflächenereignisse Resultate: **kein statistisch signifikanter Überschuss**

flüssige Edelgase Experimente – LAr, LXe

- LXe & LAr Detektoren auf Basis verflüssigter Edelgase
 - Betrieb als 2-Phasen Detektor: flüssige & gasförmige Phase
 - Vorteile:
 - große Detektorvolumina (10 kg \rightarrow 100 kg \rightarrow 1000 kg \dots)
 - Teilchenidentifikation: Ladung & Szintillation, Pulse-Shape

Herausforderungen:

- niedrige Schwelle, weitere Reduktion der Untergrundrate

Experimente: Argon – ArDM, WARP Xenon – XENON100, LUX

Ligensenation ven naceigen Laeigacon ale Din Detenteren

	Z (A)	Siedepunkt T _s [K] bei p = 1 bar	fl. Dichte bei T _s [g/cm ³]	lonisation [e-/keV]	Szintillation [Photonen/ keV]	Szintillations- licht [λ in nm] λ-Schieber	Preis [\$/kg]
Neon	10 (20)	27.1	1.21	46	7	85 (WLS)	60
Argon	18 (40)	87.3	1.40	42	40	128 (WLS)	2
Xenon	54 (129/131)	165.0	3.06	64	46	175	>1.000

2-Phasen LXe-Experimente: Grundlagen

Prinzip von LXe 2-Phasen-Detektoren:

- Szintillationslicht:
- Ionisationssignal:

Nachweis über Photomultiplier (PMT in LXe) Drift der Elektronen über E-Feld zur Xe-Gasphase

Signale S1 (prompt) & S2 (verzögert):

- S1: primäre Xe-Anregung durch Rückstoß-Kern (promptes Szintillationslicht)
- S2: Nachweis der gedrifteten Elektronen durch Extraktion in die Gasphase, dort Beschleunigung der e⁻ mit starkem Feld E_{ext}; im Gas durch Kollisionen Entstehung von Elektrolumineszenz
 Sachweis des Lichts mit oberen PMT

Koinzidenz von S1 und S2:

- S1 + S2: Teilchenart & Ort der Streuung

LXe: Ionisation und Anregung

Teilchendiskriminierung: Verhältnis Anregung/Ionisation abhängig von dE/dx - Kernrückstoß: hohe Rekombination, Gammas: geringere Rekombination

Teilchenidentifikation

Diskrimination zwischen WIMP-Kernrückstößen und Elektronen

Teilchenidentifikation:	Elektron:	S2/S1 ist groß (kein Quenching)	
	WIMP:	S2/S1 ist klein (weniger Ionisation)	
Kernrückstoßenergie:	Intensität S1 (primäre Anregung)		
Ortsrekonstruktion:	PMTs (x,y), Driftzeit (z)		

Verhältnis S2/S1 zur Teilchendiskrimination Schema & MC-Simulation von Lichtsignalen

XENON100 Experiment

XENON-100: im LNGS

- LXe-Detektor mit 161 kg Masse (~99 kg als Veto, 62 kg als Target)
 - Detektor: $\emptyset = 30$ cm, h = 30 cm (maximale Driftstrecke für Elektronen)
 - 242 PMT zur Auslese des Szintillations- & Elektro-Lumineszenz-Lichts
 - Faktor 100 geringerer Untergrund (Selektion, Reinigung, Selbstabsorption) Faktor 10 mehr Masse als das Vorgängerexperiment XENON10

XENON100 Experiment

XENON-100:

Messungen am LNGS

XENON100 Experiment: Resultate

neueste Resultate von XENON100:

- 224.6 Tage Datennahme (13 Monate in 2011/12): 2323.7 kg·Tage
- Energiefenster für WIMP-Suche: 6.6 43.3 keV (Kernrückstoßenergie)
- **2 Ereignisse**, bei Untergrunderwartung $N_{bq} = (1.0 \pm 0.2)$ Ereignisse
- $\sigma_{sl} < 2.0 \times 10^{-45} \text{ cm}^2$ bei WIMP-Masse M_x = 55 GeV (weltbestes Limit!)

WIMP Resultate: aktueller Status

WIMP Resultate & Interpretationen fallen in zwei Kategorien:

- Experimente mit Überschuss-Ereignissen (CRESST2) bzw. mit jahreszeitlicher Modulation (DAMA-Libra, CoGeNT) Systemat. Effekte?
- klare Ausschluss-Grenzen durch XENON100 (CDMS-II, Zeplin-III,...)

Large Underground Xenon (LUX) Experiment

Neues US 2-Phasen-Xenon-Experiment im Sanford Lab:

- ähnliche Technologie wie XENON (S1-S2), H₂O Abschirmung
- 2-Phasen LXe Detektor mit 370 kg Masse (100 kg fiducial vol.)
- 2012: Aufbau (Juli) und Test des Experiment in der Davis Cavern
- 2/2013: erstes Abkühlen und Beginn der Datennahme (Kalibration,...)
- erwartete Sensitivität nach 300 Tagen $\sigma_{sl} \sim 2 \cdot 10^{-46} \text{ cm}^2$ (< 1 bg-event)

XENON1T

XENON Nachfolge-Experiment:

- 2-Phasen TPC mit 2.2 t LXe Masse
- Lichtauslese: 250 PMTs (3-inch)
- Wasser-Cherenkov-Vetodetektor
- Sensitivität: σ_{SI} < 2·10⁻⁴⁷ cm² (90% CL)

H₂O-Veto

fiducial volume m ~ 1.1 t 2.2 t LXe

DARWIN Projektstudie

DARWIN: Dark matter Wimp search in Noble liquids

- Zielsetzung: ´ultimatives´ europäisches DM-Experiment
- Detektor-Technologie: multi-T LXe Target

Zukünftige WIMP Sensitivitäten

Astroteilchenphysik II: Teilchen & Sterne

