

Astroteilchenphysik – I

Wintersemester 2013/14 Vorlesung # 3, 7.11.2013

Experimentelle Techniken

Luftschauer-Prozesse
 Einführung
 elektromagnetische Kaskaden,
 Myonen & Hadronen
 Querverbindungen
 Schauerparameter

www.kit.edu

Terrestrische Teilchenstrahlen – Neutrinos

Terrestrische v-Quellen	v–Energien
Geoneutrinos (²³⁸ U, ²³² Th Zerfälle in Mantel, Kruste)	2-4 MeV
Kernreaktoren (ß-Zerfall von Spaltprodukten)	1 – 5 MeV
Spallationsquellen (π^+ - μ^+ Zerfallskette in Ruhe)	bis 50 MeV
Beschleuniger (π+-Zerfall im Fluge)	bis 200 GeV

Teilchen aus dem Universum & dem Labor

Teilchenstrahlung über einen extrem weiten Energiebereich

2.1.1 Luftschauer-Experimente

Entdeckung der kosmischen Strahlung

- **1912:** Viktor Hess erster experim. Nachweis der kosmischen Strahlung Serie von Ballonflügen vom Wiener Prater (h = 5 km)
 - **Ergebnisse:** Ionisation der Luft nimmt mit wachsender Höhe nicht ab!

Erklärung: Strahlung von sehr hoher Durchdringungskraft dringt von oben in die Atmosphäre ein, nicht mit der Sonne korreliert

Physikal. Zeitschrift 13 (1912), 1084

83. Naturforscherversammlung Karlsruhe (Sept. 1911)

Die zu geringe Abnahme der Ionisation mit der Höhe in einem geschlossenen Gefäß könnte zweierlei Ursachen haben: "... erstens kann außer den radioaktiven Substanzen der Erde ein anderer, uns noch unbekannter lonisator

in der Atmosphäre wirksam sein"

KIT-IEKP

ausgedehnte Luftschauer – Pierre Auger

CONCLUSION

One of the consequences of the extension of the energy spectrum of cosmic rays up to 10¹⁵ ev is that it is actually impossible to imagine a single process able to give to a particle such an energy. It seems much more likely that the charged particles which constitute the primary cosmic radiation acquire their energy along electric fields of a very great extension.

Pierre Auger 1899-1993

hochenergetische Schauer – Volcano Ranch ุ

Volcano Ranch: 2 km² Pionierexperiment bei

Albuquerque, New Mexico (19 Szintillatoren)

- jeweils 3.3 m² Fläche, jeweils im Abstand 442 m
- Messungen von J. Linsley et al. von 1958-1972
 - 1961: hochenergetisches Ereignis
 - 1970: Pionieruntersuchungen zur Fluoreszenztechnik

ent bei oren) and 442 m 958-1972 $E = 2 \times 10^{20} \text{ eV}$

EXTREMELY ENERGETIC COSMIC-RAY EVENT*

John Linsley, Livio Scarsi,[†] and Bruno Rossi Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received April 12, 1961)

This note is a preliminary report on an extremely large cosmic-ray air shower. The event was observed at the M.I.T. Volcano Ranch station, elevation 5800 ft, near Albuquerque, New Mexico. An array of scintillation counters was used to detect and measure air showers by the technique used in the earlier M.I.T. Agassiz experiment.1 The main array was made up of 19 detectors arranged in a pattern of triangles as shown in Fig. 1. The area of each detector was 3.3 m², and the spacing of adjacent detectors was 442 m. The area enclosed by the array was 2 km², but the sensitive area for detecting very large showers was considerably greater. An additional detector shielded by 10 cm of lead sampled the penetrating component of showers.

The event to be described was one of two, nearly equal in size, which were the largest observed in the period of operation September, 1959, to May, 1960. The total on-time of the equipment during that interval was about 180 days. The particle densities (particles/ m^2) registered at the various points of the array are given in Fig. 1. The shower core struck front. The values 41°, 41°, and 70° were found for the zenith angle, declination, and right ascension, respectively. The deviations of the ob-

hochenergetische Schauer – Raten

hochenergetische Schauer – Nachweis

Direkte Methoden: Ballon- & Satelliten-

Indirekte Methoden: Luftschauer-Experimente

Ballonexperimente - Überblick

Experiment	Messziele	Energiebereich	
Antimaterie			
HEAT - High Energy Antimatter Telescope	e ⁺ , e ⁻ Antiprotonen	5 - 50 GeV 0.2 - 30 GeV	
CAPRICE - Cosmic AntiParticle Ring Imaging Cherenkov Experiment	e+, e- Antiprotonen atmosphärische Myonspektren	0.5 - 50 GeV	
BESS - Ballone Borne Experiment with Superconducting Solenoidal Spectrometer	Antiprotonen Antihelium	0.25 - 3 GeV 0.25 - 100 GeV	
Element- und Isotopenzusammensetzung			
ISOMAX - Isotope Magnet Experiment	Beryllium 10, Isotope mit 2 < Z < 8	0.2 - 3 GeV / Nukleon	
TIGER - Trans-Iron Galactic Element Recorder	Elemente 30 < Z < 40	> 0.5 GeV / Nukleon	
Energiespektren			
BETS - Electron Telescope with Scintill. fibers	Elektronenspektrum	10 - 100 GeV	
RICH - Ring-Imaging Cherenkov	Proton- und Heliumspektrum	20 - 200 GeV / Nukleon	
JA CEE - Japanese-American Collaborative Emulsion Experiment	Spektren 1 < Z < 26	1 - 100 TeV	
ATIC - Advanced Thin Ionization Calorimeter	Proton- und Heliumspektrum	10 - 10000 GeV	
TRACER - Transition Radiation Array for Cosmic Energetic Radiation	Spektren 8 < Z < 26	< 10 TeV / Nukleon	
RUNJOB - Russ Nippon Joint Balloon Experim.	Spektren Z < 26	< 100 TeV / Nukleon	
BACH - Balloon Air Cherenkov Experiment	Silizium- und Eisenspektren	< 1000 TeV / Nukleon	

ISOMAX Experiment

Ziele von ISOMAX:

Messung von leichten Isotopen, speziell: ⁹Be / ¹⁰Be Verhältnis bis zu Energien von einigen GeV/n
Höhe 2.5 m, Masse 2 t

<u>Iso</u>tope

Magnet

Experiment

- oberer ToF
- oberer Cherenkov
- obere Driftkammer
- mittlere Driftkammer
- s.l. Magnetspulen
- untere Driftkammer
- mittlerer ToF
- unterer Cherenkov
- unterer ToF

Chemische Zusammensetzung der CR

kosmische Strahlung - Primärteilchen

Zusammensetzung der primären kosmische Strahlung:

- 86 % Protonen, 11% Alpha-Teilchen, 1% schwere Kerne, 2% Elektronen
- Elementhäufigkeit entspricht nahezu der solaren Verteilung

Luftschauer: Grundlagen & Experimente

Luftschauer: entstehen durch Wechselwirkung eines primären hochenergetischen Teilchens in der oberen Atmosphäre, dann sekundäre Teilchen via Kaskaden-/Zerfalls-Prozesse (3 Komponenten)

Entwicklung eines Luftschauers

Modellierung der Teilchenwechselwirkungen in der Atmosphäre ist entscheidend

> experimentelle Daten für Entwicklung eines Schauers aus Hochenergiephysik

Elektronen

Entwicklung eines Luftschauers

Modellierung: Kernwechselwirkungen, Teilchenzerfälle, elektromagnetische Wechselwirkungen, Reaktions-Kinematik

vollständig ionisierter Kern oder Proton p p 160 r v

Jets & Schauer an Beschleunigern

Methodische Querverbindungen: Teilchen- und Astroteilchenphysik

Schauer am LHC-Beschleuniger

Beschleuniger: Protonen bis 7 TeV (exakt bekannt)

Abdeckung in einer 4π -Geometrie

Schauer durch AGN-Beschleuniger

Beschleuniger: Protonen bis 10²⁰ eV oder Kerne (Primärteilchen ist unbekannt)

Abdeckung in enger Vorwärtsrichtung

Jets & Schauer an Beschleunigern

Methodische Querverbindungen: Teilchen- und Astroteilchenphysik

Paarbildung – wichtige Parameter

Wirkungsquerschnitt f
ür Paarbildung: Schwellenergie
 E_{γ,thresh} ~ 2 m_e = 1.02 MeV [+ O(m_e²/M_{Kern})]

Paarbildung und Gamma-Astronomie

Paarbildung: Kinematik erfordert Impulstransfer an Kern (hohes Z)

- Absorption des Rückstoßes

kann nicht im Vakuum erfolgen (daher Gamma-Astronomie!)

Bremsstrahlung – wichtige Parameter

Bremsstrahlungsverluste:

- nehmen linear mit der Energie E zu

$$\left(\frac{dE}{dX}\right)_{brems} = \frac{1}{X_0} \cdot E$$

nur wichtig f
ür leichte
 Teilchen (e⁻ e⁺), da

σ_{Brems} ~ 1/m²

Beispiel: Myon-Elektron Verhältnis dE/dx_(µ/e) ~ (m_e / m_µ)² ≈ 2.2 · 10⁻⁵

Elektronen

Elektromagnetische Kaskadenprozesse: Erdatmosphäre wirkt als massiver Absorber für elektromagnetische Komponente ~80%-95% der Primärenergie wird in Ionisationsenergie umgewandelt

Strahlungslänge X₀

- typische Längenskala, nach der bei

hochenergetischen Elektronen

 - ihre Energie auf 1/e abgefallen ist durch Emission von Bremsstrahlung

$$E(x) = E_0 \cdot e^{-X/X_0}$$

hochenergetischen Photonen

- 7/9 der mittleren freien Weglänge für Paarbildung erreicht ist $X_0 = 7/9 \cdot \lambda_{paar}$

Elektromagnetische Kaskadenprozesse: Erdatmosphäre entspricht einem elektromagnetischen Kalorimeter mit ~ 25 X₀
Schauerentwicklung abhängig von atmosphärischen Parametern

KIT-IEKP

- **Schauerentwicklung:** Erdatmosphäre wirkt als massiver Absorber
 - 10⁵ bis zu 10¹¹ Teilchen

