

Astroteilchenphysik – I

Wintersemester 2013/14 Vorlesung # 08, 12.12.2013

Guido Drexlin, Institut für Experimentelle Kernphysik

Experimentelle Techniken

- CTA & Milagro
- Neutrino-Teleskope: Techniken
- Signal & Untergrund
- im Wasser & unter Eis
- Wasser-Cherenkov-Teleskope
- IceCube: Aufbau & Resultate

www.kit.edu

Gammaquellen & Erzeugungsmechanismen

Erzeugung von hochenergetischen Gammas:

zwei grundlegende Erzeugungsmechanismen ("LEP" vs. "LHC")

UHE-Gammaquellen:

SN-Schocks, Pulsarwindnebel, diffuse Strahlung, AGNs (aktive Galaxien), ...

Gamma-Teleskope

Aufbau großer Arrays von Cherenkov-Teleskopen:

- gute Untergrund-Diskriminierung
- Scan der galaktischen Ebene
- Individuelle Quellen:
 ausgedehnte SN-Schocks
 Pulsarwindnebel
 aktive Galaxien (AGNs)

Namibia⁸

Argentinien

Chile 🕶

00

-30°

KIT-IEKP

CTA Observatorium – Quellen

Abschätzung: ~ 1000 TeV Gamma-Quellen in CTA Betrieb als ´klassisches Observatorium´

Milagro Experiment

Milagro: ein Wasser-Cherenkov Detektor (2001-2008) als TeV Gamma (CR) -Observatorium mit großem Gesichtsfeld

- Anisotropie: Nachweis von 2 hot spots nahe am Sternbild Orion
 - erhöhter Fluss an TeV
 Gammas

HAWC Experiment

High-Altitude Water Cherenkov Observatorium (HAWC)

- Milagro-Nachfolge-Experiment in Pueba (Mexiko)
- 4100 m Höhe: niedrige Schwelle für Gammas
- 300 große Wasser-Cherenkov-Tanks auf 20.000 m²
- Ziele: Abdeckung eines großen Himmelsbereichs zur Beobachtung von AGNs, GRBs, diffuse Quellen

2.1.3 Neutrino-Teleskope

UHE Neutrinos: Erzeugung in astrophysikalischen Beschleunigern

- Nachweis über CC & NC Reaktionen in großvolumigen Neutrinoteleskopen
 - im Eis (IceCube)
 - unter Wasser (KM3NeT)

Nachweismechanismus:

- hochenergetisches v_{μ} erzeugt relativistisches Myon mit großer Reichweite, das Cherenkovlicht emittiert
- Detektion des Cherenkovlichts mit PMT-Array (3-dim) in einem instrumentierten Volumen von $0.1 - 1 \text{ km}^3$

Neutrino

UHE Neutrino-Punktquellen

Neutrino-Astronomie:

Quellen:

- AGN-Jets (aktive Galaxien)
- GRBs (Gammastrahlen-Burst)
- µ-Quasare (galaktisch)

Modell:

- UHE Protonenbeschleuniger
 - \rightarrow beam dump (Materiewolke)

$p + p \rightarrow p + p + \pi^+ \rightarrow \nu_{\mu} + \mu^+ \rightarrow e^+ + \nu_e + \nu_{\mu}$

- UHE Neutrinos $\nu_{\mu},\,\nu_{e},\,$ aus Pion-Myon-Zerfallskaskade
- UHE Neutrinos werden nicht abgeschirmt (Dunkelwolken,...)
- Nachweis über Ww. in Erde

UHE Neutrino-Punktquellen

Neutrino-Astronomie:

Quellen:

- AGN-Jets (aktive Galaxien)
- GRBs (Gammastrahlen-Burst)
- µ-Quasare (galaktisch)

Modell:

- UHE Protonenbeschleuniger

 $p + p \rightarrow p + p + \pi^+ \rightarrow \nu_{\mu} + \mu^+ \rightarrow e^+ + \nu_e + \nu_{\mu}$

 \rightarrow beam dump (Materiewolke)

Flavourzusammensetzung:

- an der Quelle

$$\mathbf{v}_{\mathbf{e}}$$
: \mathbf{v}_{μ} : \mathbf{v}_{τ} = 1 : 2 : 0

- nach Propagation (v-Oszillation)

 $\mathbf{v_e}$: $\mathbf{v_{\mu}}$: $\mathbf{v_{\tau}}$ = 1 : 1 : 1

Nachweis von UHE Neutrinos - Untergrund

Hauptuntergrundquellen:

- Myonen aus Schauerprozessen der kosmischen Strahlung
- **atmosphärische** v_{μ} v_{e} aus Wechselwirkungen der kosmischen Strahlung

Nachweis von UHE Neutrinos - Myonen

Hauptuntergrundquellen:

- Myonen aus Schauerprozessen der kosmischen Strahlung laufen nach unten ($\cos \theta > 0$), ~ 10⁶ häufiger als v-induzierte Signale

Abtrennung der atmosphärischen Myonen (Untergrund) durch Polarwinkelschnitt cos 😔 < 0</p>

- selektiere nach oben laufende Myonen
 - stmosphärische Neutrinos
 - Solution UHE Neutrinos

(-)

Nachweis von UHE Neutrinos - Myonen

Hauptuntergrundquellen:

 Myonen aus Schauerprozessen der kosmischen Strahlung können durch einen Vetodetektor oberhalb des Experiments abgetrennt werden

Abtrennung der atmosphärischen Myonen (Untergrund) durch Vetodetektor

atmosphärisches Myon erzeugt Hit im oberirdischen Vetozähler (IceTop)

atmosphärisches Neutrino erzeugt Hit nur im Neutrino-Detektor (IceCube) IceTon

Nachweis von UHE Neutrinos - Erde

Neutrinos und Erd-Opazität:

- tiefinelastische Streuung $\sigma_v \sim E_v (E_v = 100 \text{ TeV} \Leftrightarrow \sigma_v = 10^{-7} \text{ mbarn})$
- ab 100 TeV beginnt die Erde opaque für v's zu werden

$$(1/\lambda_{\nu}) = \rho_{\text{Erde}} \cdot N_A \cdot \sigma_{\nu}(E_{\nu})$$

v-Überlebenswahrscheinlichkeit P beim Durchgang (Strecke d) durch Erde

$$P(E_v) = e^{-(d/\lambda_v)}$$

THE STUDENT

UHE Neutrino-Energiespektrum

Hauptuntergrundquellen:

- atmosphärische vu ve aus Wechselwirkungen der kosmischen Strahlung

Nachweis von UHE Neutrinos

- CC Reaktionen von UHE v_µ's erzeugen hochenergetische GeV/TeV/PeV Myonen
 E(µ) ~ 0.5 0.7 E(v_µ)
- Myonen haben große Reichweite in Eis/Wasser
 1 PeV: R_µ = 1.7 km
 10 PeV: R_µ = 7 km
- Emission von Cherenkov-Licht mit θ_c ~ 43°
- Spur-Rekonstruktion aus PMTs

$$\theta_{v-\mu} \sim \frac{0.7^{\circ}}{\left(E_v [TeV]\right)^{0.6}}$$

Nachweis von UHE Neutrinos

CC Reaktionen von UHE vµ's erzeugen hochenergetische GeV/TeV/PeV – Myonen - E(µ) ~ 0.5 - 0.7 E(vµ)

 Myonen haben große Reichweite in Eis/Wasser
 1 PeV: R_µ = 1.7 km
 10 PeV: R_µ = 7 km

Emission von Cherenkov-Licht mit θ_c ~ 43°

Spur-Rekonstruktion aus PMTs

$$\theta_{\nu-\mu} \sim \frac{0.7^{\circ}}{\left(E_{\nu}[TeV]\right)^{0.6}}$$

Nachweis von UHE Neutrinos: Eis & Wasser

 \odot

 $\overline{\mathbf{S}}$

 \odot

 \bigcirc

 \odot

 \bigcirc

 \bigcirc

 \odot

 \bigcirc

 \odot

Neutrino-Teleskope im Eis & unter Wasser

Teleskop im antarktischen Eis

- gute optische Transparenz
- Streuung an Staubteilchen
- PMTs niedrige Rauschrate
- aufwändige Infrastruktur
- Oberflächenveto

Tiefsee-Teleskop im Mittelmeer

- optische Transparenz
- Bewegung der PMT-Strings
- PMTs hohe Untergrundrate
- aufwändige Infrastruktur
- Ozeanographische Studien

Beispiel: Lichttransport in Eis & Wasser

Neutrino-Teleskope im Eis & unter Wasser:

Nachweise der Cherenkov-Strahlung – Eis ist das bessere Medium

Nachweis von UHE Neutrinos: Wasser

weitere Messungen f ür Standort-Auswahl:

K-40

- optische Streuung, Stärke der Meeres-Strömungen
- Biolumineszenz
- Sedimentation
- K-40 Untergrundrate
- Topologie Meeresboden
- Infrastruktur an Land

Tiefseetechnologie

Tiefseetechnologie f ür 1km³ Wasserdetektor:

- Hochseeschiff (Verlegung)
- elektro-optisches Kabel (L = 20-100 km)
 Verteilerbox, 50 kW für 10000 PMTs
 Signal-Bandbreite > 100 Gb/s
- Hydrophone (Position)
- Tiefseetauchroboter

ANTARES

Astronomy with a Neutrino Telescope and Abyss environmental RESearch

ANTARES

- v-Teleskop: Mittelmeer vor Toulon (2-2.4 km)
- Konzept: flexible Strings mit PMT-Tripels, akustische Transponder (Position)
- Fläche $A = 200 \text{ m} \times 200 \text{ m} (A_{eff} = 0.1 \text{ km}^2)$
 - 1996: Beginn F&E, 2001: erstes Kabel
- 2008: 12 Strings, seither Datennahme,

Nachweis Oszillationen von v_{atmos}

NEMO

- italienisches Pilotprojekt (F&E seit 1998)
- Vorbereitung & Tests für KM3NeT

Phase-I:

- Prototyp Turm: 4 instrumentierte Alu-'bars'
- erfolgreicher Betrieb über mehrere (!) Monate

Phase-II

- 2013: erster Turm in 3500 m Tiefe installiert
- 80-100 km langes elektro-optisches Kabel
- instrumentierter Turm mit 16 Alu-Armen (4 PMTs)

NESTOR

Neutrino Extended Submarine Telescope with Oceanographic Research:

- griechische Pilot-Untersuchungen im ionischen Meer (F&E seit 1991)
- verschiedene Tiefsee-Standorte in d > 3500 m

Konzept: hexagonaler Stern aus Titan-Rohren mit 2 PMTs an jedem Strahl 2004: Installation eines Prototyps & erste Messungen

ESTOR Imstruct

KM3NeT Konsortium

- KM3Net europäisches Konsortium für ein ~5 km³ großes "vernetztes" Neutrinoteleskop im Mittelmeer (~200 M€ Kosten)
 - Ziele:
- Abdeckung der südlichen Hemisphäre in UHE Neutrinos
- Punktquellen 1-100 TeV: galaktisches Zentrum,...
- bessere Sensitivität als IceCube angestrebt

KM3NeT Konsortium

KM3Net – F&E Arbeiten zur Entwicklung eines DOM

- Digital Optical Module (17-inch Durchmesser) bestückt mit 31 3-inch PMTs zum Nachweis des Cherenkov-Licht
- Km3NeT soll verteilt auf 3 Standorte aufgebaut werden

IceCube Neutrinoteleskop

IceCube Neutrinoteleskop

IceCube – erste Quellen

PHYSICAL

REVIEW

4-2013 – IceCube beobachtet die ersten (extra-) galaktischen **Neutrinos** (2.8 σ Effekt) mit Energien:

 $-E_1 = (1.04 \pm 0.16) \text{ PeV } E_1 = (1.14 \pm 0.17) \text{ PeV im Detektor}$

- Beginn der HE-Neutrino-Astronomie

First observation of PeV-energy neutrinos with IceCube

M. G. Aartsen,² R. Abbasi,²⁷ Y. Abdou,²² M. Ackermann,⁴¹ J. Adams,¹⁵ J. A. Aguilar,²¹ M. Ahlers,²⁷ D. Altmann,⁹ J. Auffenberg,²⁷ X. Bai,^{31, *} M. Baker,²⁷ S. W. Barwick,²³ V. Baum,²⁸ R. Bay,⁷ J. J. Beatty,^{17,18} S. Bechet,¹² J. Becker Tjus,¹⁰ K.-H. Becker,⁴⁰ M. Bell,³⁸ M. L. Benabderrahmane,⁴¹ S. BenZvi,²⁷ J. Berdermann,⁴¹ P. Berghaus,⁴¹ D. Berley,¹⁶ E. Bernardini,⁴¹ A. Bernhard,³⁰ D. Bertrand,¹² D. Z. Besson,²⁵ G. Binder,^{8,7} Bindig,⁴⁰ M. Bissok,¹ E. Blaufuss,¹⁶ J. Blumenthal,¹ D. J. Boersma,³⁹ S. Bohaichul ²⁰ C. B. ¹

Ernie

Bert

