

Astroteilchenphysik – I

Wintersemester 2013/14 Vorlesung # 09, 19.12.2013

Experimentelle Techniken

- Suche nach seltenen Ereignissen
- Reaktionsraten
- Untergrundprozesse: α-, ß-, γ-Zerfälle
- Quellaktivität:
 natürliche Quellen

Neutrino-Astronomie

Astrophysikalische Neutrinos:

- extragalaktisch: AGNs, GRBs
- Untergrund:

Myonen aus kosmischen Schauern atmosphärische Neutrinos (isotrop)

AGN-Jet

Target

(beam dump)

ν

р

extragalaktische

Strahlung

Neutrino-Teleskope

Neutrino-Nachweis unter Wasser & im Eis:

Detektion des Cherenkov-Lichts von Myonen aus CC-Reaktion von hochenergetischen v_{μ} mit einem großvolumigen PMT Array (0.1-1 km³)

IoP - Physik Durchbruch des Jahres 2013

Neutrino-Astronomie:

erster Nachweis astrophysikalischer Neutrinos im TeV-PeV-Energiebereich

Cosmic neutrinos named Physics World 2013 Breakthrough of the Year

Dec 13, 2013

The *Physics World* award for the 2013 Breakthrough of the Year goes to "the IceCube South Pole Neutrino Observatory for making the first observations of cosmic neutrinos". Nine other achievements are highly commended and cover topics ranging from nuclear physics to nanotechnology

Celebrating the completion of IceCube at the South Pole

In seeking to make sense of night skies, astronomers have always had to rely on electromagnetic radiation – from visible and infrared light to X-rays and gamma rays. The team behind the *Physics World* Breakthrough of the Year has, however, ushered in an era of "neutrino astronomy", whereby particles – not radiation – are the tools of the trade.

2.2 Suche nach seltenen Ereignissen

Suche nach seltenen Ereignissen:

Signalrate: ~1 Ereignis in einem Detektor (10-100 kg) *pro Jahr* Untergrundrate: <1 Ereignis/Jahr (sollte kleiner als Signalrate sein)

Seltene Ereignisse – Signal

Seltene Ereignisse – Untergrund

Suche nach WIMP **Streuereignissen** - Störsignale durch Röntgen-Photonen, **Compton-Elektronen** & Neutronen

Seltene Ereignisse – das Target

Berechnung der Anzahl seltener Ereignisse: Targetmasse gibt die Anzahl der Targetkerne vor

Targetmaterial

mit

- Dichte ρ [g/cm³]
- Atommasse M_A [u]

Targetkerne pro Einheitsvolumen [cm⁻³]

 $n_{\text{Target}} = \rho \cdot N_A / M_A$

Seltene Ereignisse – einfallender Strahl

Berechnung der Anzahl seltener Ereignisse: Berechnung der Flussdichte J einfallender Teilchenstrahl mit - Geschwindigkeit v_i [cm/s] - Anzahldichte n_{Strahl} [cm⁻³] Flussdichte J [cm⁻² s⁻¹] $J = n_{\text{Strahl}} \cdot v_i$

WIMP Wind

Seltene Ereignisse – Fluss & Target

Berechnung der Anzahl seltener Ereignisse: Intensität I & Targetkerne im Strahl N_{Target}

Targetmaterial

mit

- Dichte p [g/cm³]
- Atommasse M_A [u]
- Länge **(**[cm]

+ Avogadrozahl N_A

Targetkerne pro Einheitsvolumen [cm⁻³]

$$n_{\text{Target}} = \rho \cdot N_A / M_A$$

Targetkerne im Strahl

$$N_{\text{Target}} = n_{\text{Target}} \cdot F \cdot \ell$$

Anzahl der Streu-Ereignisse

Rate W_r an Steuereignissen / s ~ totalem Wirkungsquerschnitt σ_{tot}

Wirkungsquerschnitt

Rate W_r an Steuereignissen / s ~ totalem Wirkungsquerschnitt σ_{tot}

Einheit des Wirkungsquerschnitts σ_{tot} :

 $1 \text{ barn} = 1 \text{ b} = 10^{-24} \text{ cm}^2$ $1 \text{ mb} = 10^{-27} \text{ cm}^2$

[barn = Scheunentor]

Astroteilchenphysik: 1 pb = 10^{-36} cm² 10^{-10} pb = 10^{-46} cm²

 σ_{tot} stellt eine effektive Fläche dar für Streuprozesse geometrischer Streuquerschnitt: $\sigma_{geom} = \pi \cdot (R^2 + r^2)$

Statistische Fluktuationen

statistische Fluktuationen bei seltenen Ereignissen: Signal + Untergrund sind stochastisch & unterliegen Poisson-/Gauß-Fluktuationen, im Idealfall: untergrundfreies Experiment

Gaußverteilung

Dichtefunktion (probability density function)

$$\frac{1}{\sqrt{2\pi \cdot \sigma^2}} \cdot \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Konfidenzintervalle

- häufig 90% CL (95% CL) für Ausschluß

Evidenzen

statistische Fluktuationen bei seltenen Ereignissen:

für die Entdeckung (**Evidenz**) eines neuen Phänomens wird i.a. eine Signifikanz > 5.0σ gefordert

2.2.1 Untergrundprozesse

Suche nach seltenen Ereignissen: Untergrundquellen entstehen durch natürliche Radioaktivität (α,ß,γ, Spaltung) & kosmische Strahlung (Myonen)

Untergrundprozesse

Suche nach seltenen Ereignissen: generische Untergrundraten durch natürliche Radioaktivität (α, β, γ, Spaltung)

natürliche Radioaktivität – instabile Kerne

natürliche Radioaktivität - intrinsisch

intrinsische Untergrundquellen aus dem Detektor:

Untergrundquellen: α-Zerfall

Karlsruhe Institute of Technology

■ α-Zerfall: α-Teilchen ist stark ionisierend, extrem kurze (µm) α-Reichweite - langsamster α-Zerfall: 232 Th $\rightarrow {}^{228}$ Ra + α t_{1/2} = 1.4 · 10¹⁰ a E = 3.9 MeV - schnellster α-Zerfall: 212 Po $\rightarrow {}^{208}$ Pb + α t_{1/2} = 3.5 · 10⁻⁷ s E = 8.95 MeV

- **α-Zerfall**-Untergrund:
 - intern:
 - oft α-Zerfallsreihen Punktwechselwirkung
 - extern:

α-Teilchen stoppt ander Oberfläche

β-Zerfall: ß-Elektronen werden nach kurzer Strecke (mm) absorbiert 3 Zerfallsarten, oft zu angeregten Endzuständen mit γ-Zerfall

γ-Zerfall: Gammas werden nur exponentiell abgeschwächt (cm)

& können mehrfach streuen (multi-Compton-Ereignisse)

Untergrundquellen: γ-Zerfall

γ-Zerfall: Gamma-Absorption für Suche nach DM und 0vßß unterschiedlich

natürliche Radioaktivität - Umgebung

ß

α

externe Untergrundquellen aus den Laborwänden & Gestein: geladene (e[±], α, p) & neutrale (γ, n) Teilchen

YNNN

Quartz

Materialien: Anteile an Uran und Thorium

Material	Material	Häufigkeit
Gestein	²³² Th	~10 ⁻⁶ g/g
	238	~10 ⁻⁶ g/g
	235၂	~10 ⁻⁸ g/g
Stahl	²³² Th	~10 ⁻⁹ g/g

natürliche Radioaktivität - Quellaktivität

Aktivität A(t) = - dN/dt

- beschreibt die Zahl dN der Zerfälle pro Zeiteinheit dt
- ist keine konstante Größe, da Ensemblezahl N
- durch die Zerfälle abnimmt, damit nimmt auch A ab
- Aktivität A ~ λ (Zerfallskonstante)

$$A = \frac{dN}{dt} = -\lambda \cdot N \qquad A(t) = A(0) \cdot e^{-\lambda \cdot t}$$

mit der Relation A(t) = λ · N(t) die Aktivität einer Quelle nimmt exponentiell ab

1 Bequerel = 1 Zerfall/s

1 Bq = 2.70 • 10⁻¹¹ Ci (nach Henri Becquerel)

1 Curie = 3.7 · 10¹⁰ Zerfälle/s

1 **Ci** = Aktivität 1 g Radium (²²⁶Ra) (nach Pierre Curie)

natürliche Radioaktivität - Quellaktivität

künstliche Eichquellen

Mit welcher Aktivität A strahlt ein durchschnittlicher Mensch (M = 70 kg)?

A: nicht nachweisbar
B: A = 10 Bq
C: A = 1.000 Bq
D: A = 10.000 Bq

natürliche Radioaktivität – Kalium-40

■ Gesamtaktivität menschlicher Körper: A ~ 10.000 Bq (K-40, C-14)

Nuklid	Aktivität in Bq
H-3	25
Be-7	25
C-14	3.800
К-40	4.200
Rb-87	650
U-238, Th-234, Pa-234m, U-234	4
Th-230	0,4
Ra-226	1
kurzlebige Rn-222-Zerfallsprodukte	15
Pb-210, Bi-210, Po-210	60
Th-232	0,1
Ra-228, Ac-228, Th-228, Ra-224	1,5
kurzlebige Rn-220-Zerfallsprodukte	30

Gesamtaktivität menschlicher Körper: A ~ 10.000 Bq (K-40, C-14)

Nuklid	Aktivität in Bq
Н-3	25
Be-7	25
C-14	3.800
K-40	4.200
Rb-87	650
U-238, Th-234, Pa-234m, U-234	4
Th-230	0,4
Ra-226	1
kurzlebige Rn-222-Zerfallsprodukte	15
Pb-210, Bi-210, Po-210	60
Th-232	0,1
Ra-228, Ac-228, Th-228, Ra-224	1,5
kurzlebige Rn-220-Zerfallsprodukte	30

■ Gesamtaktivität menschlicher Körper: A ~ 10.000 Bq (K-40, C-14)

Nuklid	Aktivität in Bq
H-3	25
Be-7	25
C-14	3.800
K-40	4.200
Rb-87	650
U-238, Th-234, Pa-234m, U-234	4
Th-230	0,4
Ra-226	1
kurzlebige Rn-222-Zerfallsprodukte	15
Pb-210, Bi-210, Po-210	60
Th-232	0,1
Ra-228, Ac-228, Th-228, Ra-224	1,5
kurzlebige Rn-220-Zerfallsprodukte	30

Untergrundreduktion

Untergrundreduktion durch Benutzung von Untergrundlaboren, aktive/passive Abschirmungen sowie stringente Materialselektion

- Reinraumbedingungen
 extrem reine Materialien
- Trennung des Detektors von Elektronik, Kühlung, ..

- Untergrundlabore
- passive Abschirmungen
- aktive Vetozähler
- Eigenabschirmung

Untergrundlabore – weltweit

- Untergrundlabore: Charakterisierung durch ihre Tiefe in m.w.e.
 - m.w.e. = meter water quivalent (Gesteins-Tiefe äquivalent als Wassersäule)

CJPL in Jinping (China)

SNOLAB in Sudbury/Ontario (Kanada)

Solare Neutrinos (SNO), 0vßß (SNO+), Dunkle Materie (DEAP, CLEAN, COUPP,...)

Sanford Lab in Lead, North Dakota (USA)

Postdocs im Sanford Lab (4300 m.w.e.)

Europäische Untergrundlabore

Vergleich von Untergrundlaboren in Europa (ILIAS Studie der EU): Abschirmung gegen kosmische Myonen

Untergrundlabore: Gran Sasso

Untergrundlabore: Gran Sasso

LNGS: größtes Untergrundlabor weltweit mit einer Fläche A = 17.300 m² unterteilt in 3 große Experimentierhallen (A,B,C), Myonrate: 3 · 10⁻⁴ m²/s

Untergrundlabore: Gran Sasso

LNGS: größtes Untergrundlabor weltweit mit einer Fläche A = 17.300 m² unterteilt in 3 große Experimentierhallen (A,B,C), Myonrate: 3 · 10⁻⁴ m²/s

"THIS UNDERGROUND FACILITY ALLOWS US TO BE CLOSELY INVOLVED WITH PROTON DECAY, GRAVITY WAVES, NEUTRINOS AND THE GROWING AND SELLING OF MUSHROOMS."

5

Frohe Festtage ein gutes Neues Jahr!

Julo

0