

Astroteilchenphysik – I

Wintersemester 2013/14 Vorlesung # 14, 06.02.2014

Guido Drexlin, Institut für Experimentelle Kernphysik

Dunkles Universum

- direkter CDM-Nachweis:
 Spin-abhängige Streuung
 WIMP-Plot
- Nachweismethoden:
 - 1- und 2-Parameter-Experimente
- Szintillatoren: DAMA, XMASS

Indirekter WIMP Nachweis – e⁺, \overline{p} & v

Resultate:

 $\chi_1^0 + \chi_1^0 \rightarrow \overline{p}, e^+, \nu, \dots$

- Positronenüberschuss: DMA oder Gamma-Pulsare
- solare WIMPs: GeV-v's

PAMELA

direkter WIMP Nachweis

Elastischer Kernrückstoß:

WIMP überträgt Energie an Gesamtkern, Stoßkinematik abhängig von:

- Targetkernmasse M_N (Si, Ge, Xe, ...)
- WIMP-Masse M_{χ} (GeV ... TeV)

$$E_{R} = 2 \cdot \frac{\mu}{M_{\chi} + M_{N}} \cdot E_{kin} \cdot (1 - \cos \theta)$$

WIMP Wechselwirkung:

- skalare Wechselwirkung mit σ_{si}
 dominiert in vielen SUSY Modellen:
 Austausch von Higgs, skalarem Quark
- kohärente Wechselwirkung des WIMPs mit allen Nukleonen

Skalare WIMP Streuung

 $\lambda = h/q$

skalare WIMP Kernstreuung ist kohärent: σ_{Streu} ~ A²

alle A Nukleonen des Kerns tragen *kohärent* zur Streuung bei

- Kohärenzbedingung q · R_i « 1 (i.a. nur für A < 50)
 - **q**: Impulstransfer $q = \mu \cdot v = A \cdot 10^{-3} \text{ GeV}$
 - R_i : Kernradius $R_i \sim A^{\frac{1}{3}} \cdot 7 \text{ GeV}^{-1}$

Verlust der Kohärenz:

falls der Impulstransfer q zu hoch ist:

- die de Broglie- Wellenlänge λ = h / q
 wird kleiner als der Kern-Radius R_i
 das WIMP ´sieht´ Kernsubstruktur
- Kohärenzbedingung ist für große Impulstransfers q bzw. Kernradien R_i nicht mehr erfüllt, S Formfaktor F mit:

Neutralino-Streuprozesse: spinabhängig

axialvektorielle Wechselwirkung: Neutralino-Spin koppelt an den Kern-Spin

spin-abhängige χ^0 -Wechselwirkungen (σ_{SD} : spin dependent)

- Spinstrukturfunktionen: Nukleonenspin (p,n) aus Partonen
- Spinmatrixelemente: Nukleonen im Kern (´mittlerer´ p/n-Spin im Kern)
- Schalenmodell:
- Kernspin aus gekoppelten Nukleonen

Spinabhängige WIMP Streuung

Kopplung

J=0

$$\sigma_{SD} \sim \sigma_0 \cdot \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2 \cdot \frac{J+1}{J} \qquad \begin{array}{l} \mathsf{a}_{\mathsf{p},\mathsf{n}} \\ \mathsf{Kopplung} \text{ (abhängig von SUSY)} \end{array}$$

- J: Kernspin durch ungepaartes Nukleon (Proton/Neutron) da Paarungsterm durch kurzreichweitige Kernkräfte
 (S_{p,n}): Erwartungswert für Proton/Neutron (z.B. 5/2, 1/2)
 - berechnet mit dem Schalenmodell der Kerne

nur Targets mit J ≠ 0 sind auf spinabhängige WIMP-Streuung sensitiv

Targetkern-Beispiele für σ_{sD} (sensitiv auf a_p oder a_n):

Detektortyp	lsotop	Anteil	Protonen	Neutronen	Kernspin J	Kopplung
NaJ	²³ Na		11	12	3/2	a _p
(Szintillator)	127		53	74	5/2	a _p
LXe	¹³¹ Xe	21.2 %	54	77	3/2	a _n
(TPC/Szintillator)	¹²⁹ Xe	26.4 %	54	75	1/2	a _n
Ge (Bolometer)	⁷³ Ge	7.8 %	32	41	9/2	a _n

WIMP Streuraten – Beispiel für ⁷³Ge

Größenordnung von WIMP Streuraten

Beispiel: Rate der (spin-abhängigen) WIMP-Streuung in einem Germaniumdetektor

- Ge-Target mit M = 1 kg

≡ 13.8 mol
 (Molmasse Ge: μ = 72.6 g/mol)

 $N = 8.3 \cdot 10^{24}$ Targetatome

davon: 8% Isotopenanteil 73 Ge (Isotop mit Kernspin \neq 0)

 $\langle \sigma_{SD} \rangle = 10^{-42} \text{ cm}^2$ (spinabhängiger Wirkungsquerschnitt)

$$R = N_{_{73}Ge} \cdot \langle \Phi \cdot \sigma_{_{SD}} \rangle$$
 ~ 4 - 10⁻⁴ kg⁻¹ Tag⁻¹

WIMP Detektoren benötigen Targetmassen > 100 kg

7

WIMP Streuraten: Energieabhängigkeit

Genaue Berechnung von Raten/Spektren:

$$R = N_{Kern} \int_{E_{kin,min}}^{E_{kin,max}} \Phi(E) \cdot \sigma_{SI/SD}(E) dE \approx N_{Kern} \cdot \langle \Phi \rangle \cdot \langle \sigma_{SI/SD} \rangle$$

- **Φ(E)** Energie- (Geschwindigkeits-) abhängiger WIMP-Fluss
- σ(E) energieabhängiger elastischer Streuwirkungsquerschnitt (SUSY)

Rückstoß-Spektrum für skalare Wechselwirkung (kohärent, Formfaktor)

Kernrückstoßenergien im keV-Bereich

Rückstoßspektrum abhängig von

- WIMP-Halomodell (ρ_{CDM}, v₀) :
 je größer v₀, je höher die Rate
- Neutralinomasse M_{γ}
- Targetkernmasse M_N
- Kernstruktur (Formfaktor F)

Detektor-Energieschwelle

wichtig: niedrige Schwelle
 im Bereich von 10 - 20 keV,
 gilt insbesondere für schwere
 Targetkerne Xenon, Jod

WIMP Plots – Experimentelle Resultate

Nachweismethoden – 1 Messparameter

Nachweismethoden – 2 Messparameter

Vorteile:

- große Target-Masse: M = 100 kg 1 Tonne
 - \Box Suche nach Modulation mit T = 1 Jahr
 - Selbstabsorption des externen Untergrunds
- bekannte Detektor-Technologie: anorganisch (NaJ, CsJ), flüssige Edelgase (LXe)
- gute intrinsische Reinheit & hohe Lichtausbeute
- sensitiv auf spin-abhängige Wechselwirkung:
 ²³Na, ¹²⁷I, ¹³¹Xe
- lange, kontinuierliche Messzeiten möglich (viele Jahre)

Nachteile:

- nur moderate Untergrund-Diskriminierung
 - d.h. Separation von Kernrückstößen & Elektronen
- begrenzte Ortsauflösung (Segmentierung)

 ■ DArk MAtter Experiment: NaJ Szintillationsdetektor-Array
 Target: 9×9.7 kg hochreine NaJ Kristalle (Szintillatoren) Schwelle E_{thres}= 2 keV_{ee} (≡ 20 keV Rückstoßenergie ²³Na)
 Auslese: 2 PMT´s/Kristall, Lichtausbeute 5-7 p.e./keV
 Untergrund: sehr geringe NaJ Eigenaktivität, Abschirmung : Beton, Paraffin, 15 cm Boliden-Pb, 10 cm Cu,

DAMA – jährliche Modulation

- 7 Jahre Datennahme (107 731 kg-Tage) von Januar 1995 Juli 2002
 Modulation der Ereignisrate mit T = 1a & erwarteter Phase (t₀ = 2. Juni)
 - Signal nur knapp oberhalb der *hardware* Schwelle bei E = 2 6 keV
 - keine Modulation bei E = 6-14 keV, statistische Signifikanz (CL) = 6.3 σ
 - Interpretation von DAMA als Evidenz für direkten WIMP-Nachweis (??)

WIMP Streuung – jährliche Modulation

Modulation des WIMP- Rückstoßspektrums

- Überlagerung der Geschwindigkeitsvektoren v_s (Sonne) & v_E (Erde) \Rightarrow Periode T = 1.00 Jahr Phase $\phi_0 = 2$. Juni

DAMA/LIBRA

LIBRA - Large Sodium Iodide Bulk for RAre processes Nachfolge-Experiment von DAMA

- 250 kg NaJ (Tl) aus
25 Kristallen (5 × 5 Matrix)

Messungen DAMA/Libra

- Datennahme seit 9/2003

Resultate

- Bestätigung des DAMA Modulationssignals: gleiche Amplitude & Phasenrelation
- Gesamtexposition (2008) Masse Jahre = 0.82 t Jahre statistische Signifikanz 8.2 σ für Signal mit jährlicher Modulation
- favorisierter WIMP Parameterbereich (M_{χ} , σ) wird aber von Xenon-Experimenten ausgeschlossen (auch für sehr leichte WIMPs!)

Modulationssignal: Ereignisse/Tag/kg/keV

Szintillation – XMASS

 XMASS: Xenon detector for Weakly Interacting MASSive Particles Experiment in der Kamioka Mine in den japanischen Alpen Ziel: schrittweise Vergrößerung der Xenon-Targetmasse, bessere Selbstabsorption des Untergrunds durch LXe (10⁻⁴ Ereignisse/kg/keV/Tag)
 Technik: UV-Szintillationslicht in flüssig-Xenon (LXe) (T = 165 K) bei λ = 175 nm, Rayleigh-Streuung limitiert Ortsauflösung Status: erste Messungen mit 800 kg (100 kg. fid.) Detektor

3.5.2 Kryogene Bolometer

kryogene Tieftemperatur-Bolometer im mK Bereich (CRESST, CDMS,...)

Vorteile:

- gute Kernrückstoß-Sensitivität (Phononen)
- relativ niedrige Energieschwelle
- gute Energieauflösung (~150 eV @ 6 keV)
- verschiedene Targetmaterialien (Ge, Si, CaWO₄)
- Kombination Photonen mit Ionisation & Szintillation: gute Abtrennung von Gammas & Elektronen
- modularer Aufbau (
 skalierbar & sequentiell erweiterbar, ggfs. Austausch von Einzeldetektoren)

Nachteile:

- aufwändige mK-Kryotechnik (Aufbau, Messen)
- sehr beschränkte Targetmasse (~ 30 kg bisher)
- modularer Aufbau (sroße innere Oberfläche)

Kryo-Bolometer – Messprinzip

Meßprinzip eines kryogenen Bolometers (Kalorimeters):

- Energiedeposition E_R des Rückstoßkerns aus der χ^0 -Streuung führt zu kleiner, aber messbarer Temperaturerhöhung ΔT im Absorber
- Absorber (Ge, Si, CaWO₄) mit Masse M ~ 300 g bei T₀ = 10-20 mK
- Thermometer zur Messung des Temperaturanstiegs ΔT im Absorber
- Wärmebad (schwache Ankopplung) zur Rückführung des Absorbers auf To

 $\Delta T = \frac{E_R}{V \cdot C_V}$ wichtig: kleine spezifische Wärmekapazität C_V des Absorbers \$\science 1 kg\$ begrenzt die Masse M eines kryogenen Bolometers (~ 1kg)

