

Astroteilchenphysik – I

Wintersemester 2013/14 Vorlesung # 15, 13.02.2014

Guido Drexlin, Institut für Experimentelle Kernphysik

Dunkles Universum

- Bolometer & Thermistoren
- Teilchendiskriminierung bei Edelweiss und CDMS
- Flüssigedelgas-Experimente: Prinzip, XENON, LUX
- Ausblick: WIMP Sensitivitäten

www.kit.edu

WIMP-Nachweis

Experimentelle Suche nach WIMP Streu-Ereignissen

WIMP Plot

- Darstellung & Vergleich der Ergebnisse als Funktion von WIMP Masse M_χ & SUSY-Wirkungsquerschnitt σ_{Streu}
- Ausschlusskurve: keine Evidenz Einschlussregion: WIMP Evidenz

Jahreszeitliche Modulation des WIMP-Signals durch Bewegung der Erde um Sonne DAMA-Libra (NaJ Szintillator) beobachtet seit langem Modulation der Rate Signal oder systematischer Effekt?

WIMP-Nachweismethoden: 2 Parameter

Szintillation & Phononen

WIMP

Bolometer bei mK Temperaturen

Betriebstemperaturen im mK Bereich erfordern ³He / ⁴He Misch-Kryostaten

Bolometerbetrieb im mK Bereich: Minimierung der spezifischen Wärme C_v bei T« T_c : Debye sches Gesetz für C_v $C_V \approx 1 \cdot 10^{18} \frac{keV}{cm^3 K} \cdot \left(\frac{T}{T_{\Theta}}\right)^3$ T_{Θ} = materialspezifische Debye-Temperatur (Ge: 374 K, Si: 645 K) 250 g CaWO₄ Kristall: Wärmekapazität T = 1 KC = 130 MeV / µK

- T = 25 mK C = 2 keV / μK
- Beispiel: 100 g Ge-Detektor bei 10 mK, $E_R = 1 \text{ keV} \rightarrow \Delta T = 1 \mu K$

Kryo-Bolometer: Phononen

(Umrechnungsfaktor 1K ~ 0.1 meV):

Quasi-ballistische Phononen 'zerfallen' in thermische Phononen

Vergleich Phononen – Ionisation in Germanium:

- elementare Phononen-Anregung $\Delta E < 1 \text{ meV}$
- Energie für 1 Elektron-Loch Paar $\Delta E \sim 2.9 \text{ eV}$ (Ge-Bandlücke: 0.9 eV)

Kryo-Bolometer: Thermistoren

Thermistor: misst μ K Temperaturanstieg des Absorbers (Phononen aus Absorber koppeln in Thermistor ein), Ziel: kleines $\Delta T \rightarrow$ großes ΔR

thermische Phononen

langsames Signal, Auslese durch hochreine, speziell dotierte Halbleitersensoren : log R(T) ~ T^{-1/2} NTD-Germanium (Neutron Transmutation Doped) temperaturabhängiger Widerstand R(T) des Sensors, hochohmig: NTD-Ge bei 30 mK: R ~ 10⁶ Ω

ballistische Phononen

TES: Wolfram-Thermometer (8×6)mm², aufgedampft, T_c =10 mK schnelles Signal, Auslese durch **supraleitende Sensoren: TES** (Transition Edge Sensor), dünner supraleitender Film (Aufbruch Cooper-Paare) Übergang supraleitend-normalleitend, $T_0 = 10-50$ mK supraleitend. Phasenübergangs-Thermometer SPT **niederohmig**: R ~ m Ω

- TES-Auslese erfolgt durch SQUIDs

Phononen-Auslese: TES

TES-Thermistoren zur Auslese ballistischer Phononen:

 Betrieb in der Mitte des nur wenige mK breiten Temperaturbereichs im Übergang zwischen dem supra- und dem normalleitendem Zustand
 Kleine Temperaturänderung ΔT S große Widerstands-Änderung ΔR

Thermistoren: TES – Auslese mit SQUIDs

SQUID: Superconducting Quantum Interference Device

- Aufgabe: Messung von minimalen Änderungen der magnetischen Feldstärke (bis einige 10⁻¹⁸ T !)
- Aufbau: dünner Niob-Ring mit 2 Josephson-Kontakten Übergang supraleitend – normalleitend - supraleitend

Thermistoren: TES – Auslese mit SQUIDs

SQUID: Superconducting Quantum Interference Device

Prinzip: magnetischer Fluss F durch SQUID-Ring ist gequantelt

 $\Phi_0 = h/2e = 2.07 \times 10^{-15} \text{ Vs}$

Betrieb:

- Gleichstrom I > I_{krit}
 Spannungsabfall
- Änderung externes Feld
 - Stromänderung im Ring,
 am SQUID beobachtet
 man ΔU (sinusförmig)

Kryoexperimente – Szintillation & Ionisation

WIMP Streuung – Teilchendiskrimination

Diskrimination (Trennung) von Signal und Untergrund

- WIMPs: Rückstoß des schweren Target-Kerns nach Streuung
- Gammas (Elektronen): Rückstoß eines leichten atomaren Elektrons
 - Serhältnis des Ladungs- (Licht-) Signals zum Phononsignal

Kryobolometer - Teilchendiskrimination

- Ge-Bolometer mit Ladungs- und Phonon-Signal
 - gute Abtrennung des Kern-Rückstoßes von e⁻, γ 's bzw. α 's
 - **Ionisations-Quenching**: Ladungssignal des Ge-Kerns ist auf ~ ¹/₃ reduziert durch **hohe spezifische Ionisationsdichte dE/dX**

CRESST-II Experiment

CRESST: Cryogenic Rare Event Search with Superconducting Thermometers - Ort: Halle A im LNGS (Gran Sasso Labor),

- Prinzip: Szintillation und Phononen (Teilchendiskrimination)
- einzelne CaWO₄ Kristalle (Kalzium-Wolframat) mit Masse M = 300 g
- WIMP-Streuung: Kernrückstöße an ¹⁸⁴W, ⁴⁰Ca, ¹⁶O

LSM – Laboratoire Souterrain de Modane

EDELWEISS – Experiment

Expérience pour détecter les WIMPs en Site Souterrain französisch-deutsches Experiment im LSM mit Ge-/Si-Bolometern

- 2000-2003: Edelweiss-I mit M = 1 kg (3 Detektoren)
- 2008-2010: Edelweiss-II mit M = 4 kg (10 Detektoren, je 400 g)
- 2011-2014: Edelweiss-III mit M = 32 kg (40 Detektoren, je 800 g)

EDELWEISS - Detektoren

Detektoren mit Ringelektroden

800g Detektor

EDELWEISS – II Resultate, EURECA

Resultate von EDELWEISS-II:

- 10 Kryobolometer (5 · 360 g, 5 · 410 g), ´fiducial mass´ ~ 160 g je Detektor
- Exposition: 384 kg Tage (effektiv), Zeitraum: April 2009 Mai 2010
- WIMP-Suche ab $E_R > 20$ keV, 5 WIMP Kandidaten, < 3 Ereignisse von

Untergrundquellen erwartet, kein statistisch signifikantes WIMP Signal

CDMS – Cryogenic Dark Matter Search

Kryo-Bolometer in der Soudan-Mine in Nord-Minnesota (2000 m.w.e) Absorber: 250 g Germanium (Ø=7.5 cm, h=1 cm) bzw. 100 g Si-Kristalle

ZIP-Detektortechnik:

Z-sensitive Ionisation and Phonon mediated detector Signale: nur 'ballistische' Phononen (4 × 1036 TES: Al und W) Phonon-Timing zur Diskrimination gegen Oberflächenereignisse

CDMS II Resultate

15.04.13: CDMS II veröffentlicht ´neue´ Daten (2007/08) 140.2 kg Tage (8 Si-Detektoren je 106 g) 3 WIMP Kandidaten-Ereignisse (~3 σ Signal)
Spekulation um WIMPs mit ~ 10 GeV

April 15, 2013

Underground experiment sees possible hints of dark matter

The Cryogenic Dark Matter Search experiment adds new intrigue to the hunt for dark matter.

- WIMPs mit kleiner Masse (~10 GeV) in Theorien mit dunklem Sektor
 - frühere Hinweise von DAMA/Libra, CoGeNT & CRESST ☑
 - Parameterregion von CDMS-II wird von XENON100 (& LUX) ausgeschlossen

WIMP-Sensitivität: Masse & Oberfläche

"Die Sensitivität eines Dark Matter Experiments skaliert mit seiner Masse"

"Die Systematik und Untergrundrate eines Dark Matter Experiments skalieren mit seiner Oberfläche"

Flüssigedelgas

Bolometer

3.5.3 Flüssig-Edelgas-Detektoren

- **LXe & LAr Detektoren** auf Basis verflüssigter Edelgase
 - Betrieb als 2-Phasen Detektor: flüssige & gasförmige Phase
 - Vorteile:
 - große Detektorvolumina (10 kg \rightarrow 100 kg \rightarrow 1000 kg \dots)
 - Teilchenidentifikation: Ladung & Szintillation, Pulse-Shape

Herausforderungen:

- niedrige Schwelle, weitere Reduktion der Untergrundrate

Eigenschaften von flüssigen Edelgasen als DM-Detektoren

	Z (A)	Siedepunkt T _s [K] bei p = 1 bar	Dichte bei T _s [g/cm ³]	lonisation [e-/keV]	Szintillation [Photonen/ keV]	Szintillations- licht [λ in nm] λ-Schieber
Neon	10 (20)	27.1	1.21	46	7	85 (WLS)
Argon	18 (40)	87.3	1.40	42	40	128 (WLS)
Xenon	54(129/131)	165.0	3.06	64	46	175

2-Phasen LXe-Experimente: Grundlagen

Prinzip von LXe 2-Phasen-Detektoren:

- Szintillationslicht:
- Ionisationssignal:

Nachweis über Photomultiplier (PMT in LXe) Drift der Elektronen über E-Feld zur Xe-Gasphase

Signale S1 (prompt) & S2 (verzögert):

- S1: primäre Xe-Anregung durch Rückstoß-Kern (promptes Szintillationslicht)
- S2: Nachweis der gedrifteten Elektronen durch Extraktion in die Gasphase, dort Beschleunigung der e⁻ mit starkem Feld E_{ext}; im Gas durch Kollisionen Entstehung von Elektrolumineszenz
 Sachweis des Lichts mit oberen PMT

Koinzidenz von S1 und S2:

- S1 + S2: Teilchenart & Ort der Streuung

Teilchenidentifikation

Diskrimination zwischen WIMP-Kernrückstößen und Elektronen

Verhältnis S2/S1 zur Teilchendiskrimination Schema & MC-Simulation von Lichtsignalen

XENON100 Experiment

XENON-100: im LNGS

- LXe-Detektor mit 161 kg Masse (~99 kg als Veto, 62 kg als Target)
 - Detektor: $\emptyset = 30$ cm, h = 30 cm (maximale Driftstrecke für Elektronen)
 - 242 PMT zur Auslese des Szintillations- & Elektro-Lumineszenz-Lichts
 - Faktor 100 geringerer Untergrund (Selektion, Reinigung, Selbstabsorption) Faktor 10 mehr Masse als das Vorgängerexperiment XENON10

XENON100 Experiment

XENON-100:

Messungen am LNGS

XENON100 Experiment: Resultate

Resultate von XENON100:

- 224.6 Tage Datennahme (13 Monate in 2011/12): 2323.7 kg·Tage

Large Underground Xenon (LUX) Experiment

- 2-Phasen-Xenon-Experiment im Sanford Lab:
 - ähnliche Technologie wie XENON (S1-S2) H₂O Abschirmung: dient hier als Myonveto
 - Detektor mit 370 kg Masse (100 kg 'fiducial volume')
 - erwartete WIMP-Sensitivität:

 $\sigma_{sl} = 2 \times 10^{-46} \text{ cm}^2$ (bei $R_{bg} = 0.5$ Ereignisse/Monat/100 kg)

28 13.02.2014 G. Drexlin – VL15

Resultate von LUX :

- 2/2013: erstes Abkühlen und Beginn der Datennahme (Kalibration,...)
- erste Meßphase in 2013 über 85 Tage (April-August 2013)
- Ereignisse mit 0.9-5.3 keV_{ee} im 100 kg fiducial volume: Beobachtung: $(3.1 \pm 0.2_{stat})$ Ereignisse Untergrunderwartung: $(2.6 \pm 0.2_{stat} \pm 0.4_{syst})$ Ereignisse
- WIMP-Limits: $\sigma_{SI} < 7.6 \times 10^{-46} \text{ cm}^2$ (bei M_{χ} = 33 GeV) aktuell bestes Limit weltweit

Zukünftige Messungen von LUX :

- geplant: 300 Messtage mit LUX in 2014/15
- Verbesserung der Sensitivität um Faktor 5
- Vorbereitung eines größeren Nachfolgeexperiments LZ: Vergrößerung der Targetmasse um Faktor 20

WIMP Resultate: aktueller Status

XENON1T

XENON Nachfolge-Experiment:

- 2-Phasen TPC mit 2.2 t LXe Masse
- Lichtauslese: 250 PMTs (3-inch)
- Wasser-Cherenkov-Vetodetektor
- Sensitivität: σ_{SI} < 2·10⁻⁴⁷ cm² (90% CL)

fiducial volume m ~ 1.1 t

DARWIN Projektstudie

DARWIN: Dark matter Wimp search in Noble liquids

- Zielsetzung: ´ultimatives´ europäisches DM-Experiment
- Detektor-Technologie: multi-T LXe Target

aktuelle & zukünftige WIMP Sensitivitäten

stay tuned!

Astroteilchenphysik – II Teilchen & Sterne

Sommersemester 2014

Supernovae

Neutrinos

Gravitationswellen