

#### Einführung 1.1 Teilchenstrahlung aus dem Universum 1.2 Teilchenstrahlung aus dem Labor **Experimentelle Methoden** 2. 2.1 Multi-Messenger-Methoden 2.1.1 Luftschauer-Experimente 2.1.2 Gamma-Teleskope 2.1.3 Neutrino-Teleskope 2.2 Suche nach seltenen Ereignissen 2.2.1Untergrundprozesse 2.2.2 Abschirm-Methoden 2.2.3Zerfallsketten

### Astroteilchenphysik – I : Gliederung



#### **Dunkles Universum** 3. 3.1 Einführung 3.2 WIMP-Kandidaten 3.3 Neutralino-Suche am LHC 3.4 indirekte Nachweismethoden 3.4.1 Gammas und Positronen 3.4.2 Neutrinos direkte Nachweismethoden 3.5 3.5.1 Reaktionskinematik 3.5.2 kryogene Bolometer 3.5.3 Flüssig-Edelgas-Detektoren 3.6 Axionen 3.7 Dunkle Energie – experimentelle Ansätze



| 4.        | Neutrinos                                                    |
|-----------|--------------------------------------------------------------|
| 4.1       | Einführung: Historie & Grundlagen, $v$ –Quellen              |
| 4.2       | v–Oszillationen: Übersicht                                   |
| 4.3       | solare & atmosphärische Neutrinos                            |
| 4.4       | Beschleuniger- und Reaktor-Neutrinos                         |
| 4.5       | Neutrinomassen: ß-Zerfallskinematik & Suche nach dem $0v$ ßß |
| <u>5.</u> | Stellare Evolution                                           |
| 5.1       | Entstehung & Entwicklung von Sternen                         |
| 5.2       | Weiße Zwerge & SNIae                                         |
| 5.3       | SNIIae: Mechanismus, Neutronensterne & Pulsare               |
| 5.4       | Supernova-Neutrinos                                          |
| <u>6.</u> | Gravitationswellen                                           |
| 6.1       | astrophysikalische Quellen                                   |
| 6.2       | Nachweis von Gravitationswellen: Laser-Interferometer        |

### Multimessenger-Methoden

#### Teilchenstrahlung aus dem (nicht-thermischen) Universum





### Terrestrische Teilchenstrahlen – Neutrinos

| Terrestrische v-Quellen                                                        | v–Energien  |
|--------------------------------------------------------------------------------|-------------|
| Geoneutrinos ( <sup>238</sup> U, <sup>232</sup> Th Zerfälle in Mantel, Kruste) | 2-4 MeV     |
| Kernreaktoren (ß-Zerfall von Spaltprodukten)                                   | 1 – 5 MeV   |
| Spallationsquellen ( $\pi^+$ - $\mu^+$ Zerfallskette in Ruhe)                  | bis 50 MeV  |
| Beschleuniger ( $\pi$ +-Zerfall im Fluge)                                      | bis 200 GeV |







### Kosmische Strahlung – Energiespektrum



### Wechselwirkungsprozesse in Schauern

indirekte Messungen über Luftschauerexperimente am Boden: Primärteilchen-Energien und Massen von 10<sup>13</sup> eV - 10<sup>20</sup> eV





Teilchenprozesse in Schauern: sehr enge Analogie zu Teilchenkaskaden in der Hochenergiephysik (fixed target) ECAL – HCAL – Myonkammern



Elektromagnetische
 Kaskadenprozesse:
 Atmosphäre = ECAL
 mit ~ 25 X<sub>0</sub>
 Schauerentwicklung
 abhängig von Atmosphäre

### Luftschauer – Prozesse & Reaktionen

Erdatmosphäre: Kalorimeter für Primärteilchen Schauer bildet Pfannkuchen-artige Struktur





### Luftschauer – Nachweis

#### KASCADE - KArlsruhe Shower Core and Array DEtector



Myonzahl N<sub>µ</sub> und Elektronzahl N<sub>e</sub> : Messung über 2 Szintillatorschichten, getrennt durch Pb-Abschirmung

- Service Energie-Indikator, dazu Integration über Lateralverteilung
- ⇔ Verhältnis N<sub>e</sub>/N<sub>µ</sub>: Schätzung der Masse des Primärteilchens
  - leichte Kerne (p) wechselwirken tiefer in Atmosphäre 🏷 N<sub>e</sub>/N<sub>u</sub> groß
  - schwere Kerne (<sup>56</sup>Fe) wechselwirken früher

♥ N<sub>e</sub>/N<sub>µ</sub> klein



# Fermi-Beschleunigung in SN-Schockfronten

#### SN-Schockfronten = effektive Teilchenbeschleuniger

(Effizienz: einige %)

- Passieren des Schocks:

 $\Delta E = (u/c) \cdot E$ 

Energie E nach n Beschleunigungszyklen mit Verlustrate ~ P<sup>n</sup>

**Power-Law Spektrum** 





dN(E)

dE

 $\sim E^{-\gamma}$ 



## GZK-Cutoff & Gamma-Astronomie

Höchste Energien (UHECR): Auger beobachtet Unterdrückung des Flusses bei E = 10<sup>19.5</sup> eV (GZK-Cutoff oder E<sub>max</sub> der Quellen?)

**TeV-Gamma-Astronomie:** viele neue Gammaquellen in der letzten Dekade



### Gammaquellen & Erzeugungsmechanismen

#### Erzeugung von hochenergetischen Gammas:

zwei grundlegende Erzeugungsmechanismen ("LEP" vs. "LHC")



#### UHE-Gammaquellen:

SN-Schocks, Pulsarwindnebel, diffuse Strahlung, AGNs (aktive Galaxien), ...

### Gamma-Teleskope

#### Aufbau großer Arrays von Cherenkov-Teleskopen:

- gute Untergrund-Diskriminierung
- Scan der galaktischen Ebene
- Individuelle Quellen:
   ausgedehnte SN-Schocks
   Pulsarwindnebel
   aktive Galaxien (AGNs)





Namibia<sup>8</sup>

Argentinien

Chile 🕶



00

-30°

**KIT-IEKP** 

### Neutrino-Astronomie

#### Astrophysikalische Neutrinos:

- extragalaktisch: AGNs, GRBs
- Untergrund:

Myonen aus kosmischen Schauern atmosphärische Neutrinos (isotrop)



AGN-Jet

Target

(beam dump)

ν

р

extragalaktische

Strahlung

### Neutrino-Teleskope

#### Neutrino-Nachweis unter Wasser & im Eis:

Detektion des Cherenkov-Lichts von Myonen aus CC-Reaktion von hochenergetischen  $v_{\mu}$  mit einem großvolumigen PMT Array (0.1-1 km<sup>3</sup>)



# Signal & Untergrund





### Abschirmmethoden

Passive Abschirmung gegen Gammas & Neutronen

- externer Veto zur Identifikation von Myonen (Szintillator, Cherenkov)
   Unterdrückung von Neutronen aus Myon-Reaktionen
- massive Blei-Abschirmung
  - Interdrückung von Gammas
- Polyethylen
  - Scholerierung von Neutronen
- Reinst-Kupfer
  - Unterdrückung der intrinsischen Gamma-Aktivität der Pb-Abschirmung
- Ultimatives Abschirm-Limit (bei Targetmassen von 10-100 to.):
  - solare Neutrinos
  - atmosphärische Neutrinos







### Zerfallsketten

#### 4 primordiale Zerfallsketten:

| Name      | Anfang-Ende                                   | t <sub>1/2</sub> [a]   | Masse A   |
|-----------|-----------------------------------------------|------------------------|-----------|
| Thorium   | $^{232}\text{Th} \rightarrow ^{208}\text{Pb}$ | 1.4 · 10 <sup>10</sup> | 4 · j     |
| Neptunium | $^{237}Np \rightarrow ^{209}Bi$               | 2.1 · 10 <sup>6</sup>  | 4 · j + 1 |
| Uran      | $^{238}U \rightarrow ^{206}Pb$                | 4.5 · 10 <sup>9</sup>  | 4 · j + 2 |
| Aktinium  | $^{235}\text{U} \rightarrow ^{207}\text{Pb}$  | 7.1 · 10 <sup>8</sup>  | 4 · j + 3 |

#### Radon-Emanation

Erzeugung von Untergrund ( $\alpha$ 's & Elektronen)

- Radon-222: Experimente zur Dunklen Materie, Sonnenneutrinos, 0vßß-Zerfall
- Radon-219/220: KATRIN



$$\lambda_1 \cdot N_1 = \lambda_2 \cdot N_2$$



-





## SUSY: Neutralino-Eigenschaften

Supersymmetrie: Fermionen Superpartner: Squarks, Sleptonen, Gauginos, Higgsinos, Gravitino, …

LSP = Lightest Supersymmetric Particle wird stabilisiert durch R-Parität (kein schneller Protonzerfall)

 $R_p = (-1)^{3B+L+2S}$ 

- **Sneutrinos v**: SUSY-Partner der v ( $\Omega_{CDM} < 10^{-3}$ )
- Gravitinos G: SUSY-Partner der Gravitonen
- Neutralinos χ<sup>0</sup>: Masseneigenzustände der 4 neutralen Gauginos Majorana-Fermionen (s=<sup>1</sup>/<sub>2</sub>)



- leichtestes Neutralino = LSP Kandidat
- Masse? Mischungsparameter? Annihilations- & Wechselwirkungsrate?
- Lebensdauer (exakte Erhaltung von R<sub>p</sub>)? CDM?



 $\widetilde{\chi}_1^0 \widetilde{\chi}_2^0 \widetilde{\chi}_3^0 \widetilde{\chi}_4^0$ 

### Indirekter WIMP Nachweis

#### Suche nach Annihilationsprodukten aus lokalen Überdichten

- neutrale Messenger: Gammas mit GeV...TeV Energien
- geladene Messenger: Positronen & Antiprotonen mit GeV Energien



### Indirekter WIMP Nachweis - Gammas

#### Suche nach Gammas aus WIMP Annihilation



## Indirekter WIMP Nachweis – e<sup>+</sup>, $\overline{p}$ & v







#### Resultate:

 $\chi_1^0 + \chi_1^0 \rightarrow \overline{p}, e^+, \nu, \dots$ 

- Positronenüberschuss: DMA oder Gamma-Pulsare
- solare WIMPs: GeV-v's

PAMELA

## direkter WIMP Nachweis

#### Elastischer Kernrückstoß:

WIMP überträgt Energie an Gesamtkern, Stoßkinematik abhängig von:

- Targetkernmasse M<sub>N</sub> (Si, Ge, Xe, ...)
- WIMP-Masse  $M_{\chi}$  (GeV ... TeV)

$$E_{R} = 2 \cdot \frac{\mu}{M_{\chi} + M_{N}} \cdot E_{kin} \cdot (1 - \cos \theta)$$

#### WIMP Wechselwirkung:

- skalare Wechselwirkung mit σ<sub>si</sub>
   dominiert in vielen SUSY Modellen:
   Austausch von Higgs, skalarem Quark
- kohärente Wechselwirkung des WIMPs mit allen Nukleonen



### WIMP-Nachweis

#### Experimentelle Suche nach WIMP Streu-Ereignissen

#### WIMP Plot

- Darstellung & Vergleich der Ergebnisse als Funktion von WIMP Masse M<sub>χ</sub> & SUSY-Wirkungsquerschnitt σ<sub>Streu</sub>
- Ausschlusskurve: keine Evidenz Einschlussregion: WIMP Evidenz



# Jahreszeitliche Modulation des WIMP-Signals durch Bewegung der Erde um Sonne DAMA-Libra (NaJ Szintillator) beobachtet seit langem Modulation der Rate Signal oder systematischer Effekt?





### WIMP-Nachweismethoden: 2 Parameter

#### Szintillation & Phononen



WIMP

### Kryo-Bolometer: Thermistoren



**Thermistor:** misst  $\mu$ K Temperaturanstieg des Absorbers (Phononen aus Absorber koppeln in Thermistor ein), Ziel: kleines  $\Delta T \rightarrow$  großes  $\Delta R$ 

thermische Phononen



langsames Signal, Auslese durch hochreine, speziell dotierte Halbleitersensoren : log R(T) ~ T<sup>-1/2</sup> NTD-Germanium (Neutron Transmutation Doped) temperaturabhängiger Widerstand R(T) des Sensors, hochohmig: NTD-Ge bei 30 mK: R ~ 10<sup>6</sup>  $\Omega$ 

ballistische Phononen



**TES: Wolfram-Thermometer** ( $8\times6$ )mm<sup>2</sup>, aufgedampft, T<sub>c</sub> =10 mK schnelles Signal, Auslese durch **supraleitende Sensoren: TES** (Transition Edge Sensor), dünner supraleitender Film (Aufbruch Cooper-Paare) Übergang supraleitend-normalleitend,  $T_0 = 10-50$  mK supraleitend. Phasenübergangs-Thermometer SPT **niederohmig**: R ~ m $\Omega$ 

- TES-Auslese erfolgt durch SQUIDs

### Kryoexperimente – Szintillation & Ionisation





### CDMS II Resultate



15.04.13: CDMS II veröffentlicht ´neue´ Daten (2007/08) 140.2 kg Tage (8 Si-Detektoren je 106 g) 3 WIMP Kandidaten-Ereignisse (~3 σ Signal)
Spekulation um WIMPs mit ~ 10 GeV

April 15, 2013

# Underground experiment sees possible hints of dark matter

The Cryogenic Dark Matter Search experiment adds new intrigue to the hunt for dark matter.

- WIMPs mit kleiner Masse (~10 GeV) in Theorien mit dunklem Sektor
  - frühere Hinweise von DAMA/Libra, CoGeNT & CRESST ☑
  - Parameterregion von CDMS-II wird von XENON100 (& LUX) ausgeschlossen





### 2-Phasen LXe-Experimente: Grundlagen



#### Prinzip von LXe 2-Phasen-Detektoren:

- Szintillationslicht:
- Ionisationssignal:



Nachweis über Photomultiplier (PMT in LXe) Drift der Elektronen über E-Feld zur Xe-Gasphase

#### Signale S1 (prompt) & S2 (verzögert):

- S1: primäre Xe-Anregung durch Rückstoß-Kern (promptes Szintillationslicht)
- S2: Nachweis der gedrifteten Elektronen durch Extraktion in die Gasphase, dort Beschleunigung der e<sup>-</sup> mit starkem Feld E<sub>ext</sub>; im Gas durch Kollisionen Entstehung von Elektrolumineszenz
   Sachweis des Lichts mit oberen PMT

Koinzidenz von S1 und S2:

- S1 + S2: Teilchenart & Ort der Streuung

### XENON100 Experiment: Resultate



#### Resultate von XENON100:

- 224.6 Tage Datennahme (13 Monate in 2011/12): 2323.7 kg·Tage



#### **28** 13.02.2014 G. Drexlin – VL15

#### Large Underground Xenon (LUX) Experiment

#### Resultate von LUX :

- 2/2013: erstes Abkühlen und Beginn der Datennahme (Kalibration,...)
- erste Meßphase in 2013 über 85 Tage (April-August 2013)
- Ereignisse mit 0.9-5.3 keV<sub>ee</sub> im 100 kg fiducial volume: Beobachtung:  $(3.1 \pm 0.2_{stat})$  Ereignisse Untergrunderwartung:  $(2.6 \pm 0.2_{stat} \pm 0.4_{syst})$  Ereignisse
- WIMP-Limits:  $\sigma_{SI} < 7.6 \times 10^{-46} \text{ cm}^2$  (bei M<sub> $\chi$ </sub> = 33 GeV) aktuell bestes Limit weltweit

#### Zukünftige Messungen von LUX :

- geplant: 300 Messtage mit LUX in 2014/15
- Verbesserung der Sensitivität um Faktor 5
- Vorbereitung eines größeren Nachfolgeexperiments LZ: Vergrößerung der Targetmasse um Faktor 20





KIT-IEKP

#### WIMP Resultate: aktueller Status



