

Astroparticle physics I – Dark Matter

WS22/23 Lecture 10 Dec. 7, 2022

www.kit.edu

CTA / Rare Event searches: on the look-out for $0\nu\beta\beta$ and WIMPs

- CTA: upcoming observatories (La Palma, Chile) for new TeV- γ –sources
- detetector background: intrinsic & cosmic-induced
- DM-signals down to $\sigma_{tot} \sim 10^{-48} \ cm^2 \ (yocto barn)$
- activity A: in Bq/Ci, decreases exponentially (τ)
- important natural isotopes: ${}^{14}C$, ${}^{40}K$
- ⁴⁰K
- calibration sources: an important tool in detector modelling

Recap of Lecture 9

Decay processes – intrinsic detector activity

Intrinsic activity of detector & surrounding materials is a major challenge

Decay processes – intrinsic detector activity

Intrinsic activity of detector & surrounding materials is a major challenge

RECAP: Decay processes – the α – decay

Single α – decays often are part of a much larger (primordial) decay chain

- two monoenergetic particles: α – particle ($E_{kin} \sim MeV$) & recoil ion ($E_{kin} \sim keV$)

- α – particle:

- a) *external* decay in material surrounding detector:
 - $\Rightarrow \alpha$ is stopped close to surface
- b) internal decay in detector:
 - $\Rightarrow \alpha$ is stopped close decay
 - \Rightarrow sucessive decays there

- recoil ion: extremely short (μm) range due to strong ionization of detector material (Bethe formula: large dE/dx value)

RECAP: Decay processes – the α – decay

Single α – decays often are part of a much larger (primordial) decay chain

- huge variation in half-lifes $t_{\frac{1}{2}}$ of α – decaying isoptopes (Geiger-Nuttall law*)

- slowest α -decay: ${}^{232}Th \rightarrow {}^{228}Ra + \alpha$ $t_{\frac{1}{2}} = 1.4 \cdot 10^{10} yr \Leftrightarrow E_{\alpha} = 3.9 MeV$ - fastest α -decay: ${}^{212}Po \rightarrow {}^{208}Pb + \alpha$ $t_{\frac{1}{2}} = 3.5 \cdot 10^{-7} s$ $\Leftrightarrow E_{\alpha} = 8.95 MeV$

Background processes: reduction & mitigation

How do I keep my detector (almost) free of background processes?

- very stringent selection of detector materials: screening of each PMT, each signal cable, everything...
- clean room conditions during assembly
- active elements (electronics, DAQ, cooling) have to be separated from detection volume
- in case of fluids: active purification steps

Background processes: reduction & mitigation

How do I keep my detector (almost) free of background processes?

- very deep underground laboratory: reduction of μ induced reactions
- active veto against remaining muons passing near the detector ($\mu \nu eto$)
- detailed simulation of background reactions (typically GEANT4): ⇒ optimized shielding concept consisting of passive/active layers
- data analysis cuts: fiducial volume, cuts,...

9

Underground Lab – daily routine of a researcher

Life as postdoc

MAJORANA Ge-diodes for $0\nu\beta\beta$ search

Underground laboratories – global overview

17 Dec. 7, 2022 G. Drexlin – ATP-1 #10

Exp. Particle Physics - ETP

Underground laboratories – LNGS

LNGS – 3 experimental halls: A/B/C

Hall B: XENONnT experiment

Underground laboratories – LNGS virtual tour

https://www.google.it/maps/@42.4527214,13.5734979,3a,75y,157.46h,113.17t/data=!3m6!1e1 !3m4!1sq6nrE6TmfIYpXqaACC7kGw!2e0!7i13312!8i6656?hl=en

Underground laboratories – LNGS

XENONnT – direct (world-leading) search for WIMP dark matter

- XENON-nT: 8.3 tons LXe TPC

(s. ch. 4.5.3)

Underground laboratories in Europe

Cooperation via ILIAS

Integrated Large Infrastructures for AStroparticle Physics

2.2.2 Shielding Methods

How much shielding do I need in my underground lab against background?

Shielding methods: external sources

Particle radiation from rocks, lab walls: charged / neutral components

Shielding methods: external sources

Quiz: how many gammas are emitted / year from a $600 m^2$ lab surface?

24

Dec. 7, 2022

Shielding methods: external sources

Answer to quiz: # of gammas / year from a $600 m^2$ lab surface

- gammas: only from top 5 cm surface $\Rightarrow V = 30 m^3$ of rock contribute - gammas: primarily from ^{232}Th with $10^{-6} g \ ^{232}Th/g = 100 g \ ^{232}Th$

- half-life
$$t_{\frac{1}{2}}(^{232}Th) = 1.4 \cdot 10^{10} yr \Rightarrow 4 \cdot 10^{10} \gamma's/year$$

 $\Rightarrow 1300 \gamma's/sec$

- more precise estimate, including self-shielding $10^{11} \gamma' s/year$

- max. energy $\gamma's$: $E_{\gamma} = 2.6 MeV$ from ²⁰⁶Tl, part of ²³⁸ $U - {}^{232}Th$ decay chain

²³²Th

Shielding methods: lead bricks

Required gamma shielding factor: massive absorber, minimum of 20 X₀

Shileding methods: lead as gamma-absorber

Linear mass absorption coefficiant μ of *Pb* for $\gamma's$ from 0.1 *MeV* ... 100 *MeV*

Shielding methods: lead bricks & their activity

What about the intrinsic purity of the new Pb wall? It contains isotope ²¹⁰Pb

Shielding methods: Roman lead from sea floor

We need very old lead, where the activity of ²¹⁰Pb has decayed away

Shielding methods: extremely pure copper

We need to install an inner copper shielding of ultra-pure Cu

Shielding methods: extremely pure copper

We need to install an inner copper shielding of ultra-pure Cu

Shielding methods: extremely pure copper

We need to install an inner copper shielding of ultra-pure Cu

Shielding methods: muon-induced neutrons

We need to shield against neutrons from muon interactions nearby

Shielding methods: muon-induced neutrons

Shielding against neutrons: polyethylene wall (CH_2) or water (H_2O)

- neutrons lose their kinetic energy in hydrogen-rich materials **Polyethylene (PE)** Pb (lead bricks) n $d = 45 \, cm$

Shielding methods: muon-induced neutrons

Karlsruhe Institute of Technology

Shielding against neutrons: polyethylene wall (CH_2) or water (H_2O)

Shielding methods: one more thing...

Veto against cosmic muons: plasic scintillator or water Cherenkov detector

Shielding methods: one more thing...

Veto against cosmic muons: plasic scintillator or water Cherenkov detector

Shielding methods: example XENON

Shielding methods: further optimization (DARWIN)

DARWIN proposal at LNGS

- very large *H*₂*0* veto counter & careful material screeing/selection
- continuous liquid xenon purification
- dominant background source:
 solar neutrinos atmospheric neutrinos
 v –floor diffuse SN neutrinos
 - the 'ultimate' shielding frontier

- the 'ultimate' shielding frontier

a 40 – 50 t liquid xenon detector

2.2.3 Primordial decay chains

Origin of radioactive isotopes here on Earth

- radioactive isotopes are forged in SNae explosions / Gamma Ray Bursts (GRBs*) in our galaxy
- after galactic voyage to Earth: enrichment in outer crust
- important isotopes:
 ²³²Th, ²³⁵U, ²³⁸U
- there are 4 primordial decay chains

*see ATP-2 summer term 2023

The four primordial decay chains

natural radioactive isotopes are part of 4 long-lived decay chains

- the 4 primordial decay chains $(10^6 \dots 10^{10} yr)$ are:

²³²*Th* – *chain*:
$$A = 4 \cdot j + 0$$
 stable end: ²⁰⁸*Pb*

²³⁷
$$Np$$
 – *chain*: $A = 4 \cdot j + 1$ stable end: ²⁰⁹ Bi

²³⁸
$$U - chain$$
: $A = 4 \cdot j + 2$ stable end: ²⁰⁶ Pb

$$^{235}U - chain$$
: $A = 4 \cdot j + 3$ stable end: ^{207}Pb

 $\frac{dN_1}{dt} = -\lambda_1 \cdot N_1$

 λM

Exp. Particle Physics - ETP

Rn

ка

generation
$$(+\lambda_1)$$
 & decay $(-\lambda_2)$ of daughter nuclide N_2

$$\frac{dN_2}{dt} = \lambda_1 \cdot N_1 - \lambda_2 \cdot N_2$$
$$\frac{dN_3}{dt} = \lambda_2 \cdot N_2 - \lambda_3 \cdot N_3$$
$$\vdots \qquad \vdots \qquad \vdots$$

generation $(+\lambda_2)$ & decay $(-\lambda_3)$ of grand-daughter N_3

decay of mother nuclide N_1

ŝ

The four primordial decay chains

natural radioactive isotope within chain: usually in secular equilibrium

- production & decay rates are *identical*:

 $\frac{dN_1}{dt} = \frac{dN_2}{dt} = \frac{dN_3}{dt}$ $A_1 = A_2 = A_3$ $\lambda_1 \cdot N_1 = \lambda_2 \cdot N_2 = \lambda_3 \cdot N_3$

idential decay rates of nuclides $N_1, N_2, N_3, ...$

identical activities A_1, A_2, A_3, \ldots

secular equilibrium* is reached after some time

- for a specific decay chain, only activity A_i of one isotope J needs to be measured

44 Dec. 7, 2022 G. Drexlin – ATP-1 #10 * implies that isotopes are not removed/added Exp. Particle Physics - ETP

Primordial decay chain of ^{232}Th **Decay chain** $^{232}Th \rightarrow ^{208}Pb$: emanation of gaseous ^{220}Rn generates $e^$ getter ²¹⁶P ²²⁰Rn pump UHV 10⁻¹¹mbar **KATRIN** huge surface spectrometer of getter material

Primordial decay chain of ^{232}Th

Decay chain $^{232}Th \rightarrow ^{208}Pb$: counter-meaures against gaseous ^{220}Rn atoms

Primordial decay chain of ^{238}U

EXCITIN

- **Decay chain** $^{238}U \rightarrow ^{206}Pb$: α decay of ^{210}Po
 - 1951: Gilbert's Atomic Energy Lab (49.50 \$)
 - included were 2
 α -sources:
 ²¹⁰Po & ²¹⁰Pb

Call or Write

Primordial decay chain of ^{238}U

Radon emanation in underground experiments: example GERDA

- requires careful assessment of radon emanation of all detector components
- measurement of radon emanation in the GERDA cryostat at LNGS
- stringent material selection ("screening")

Primordial decay chain of ^{238}U

Radon emanation in underground experiments: example DARWIN

Xenon purification & coating of materials:
 R&D works for most sensitive DM search ever

