

Astroparticle physics I – Dark Matter

WS22/23 Lecture 13 Dec. 21, 2022

www.kit.edu

Recap of Lecture 12

Searches for $0\nu\beta\beta$ –decay and astrophysical evidences for DM

- key parameters impacting the sensitivity for half-life $t_{\frac{1}{2}}^{0\nu\beta\beta}$
- enrichment factor $a = 0 \dots 1$, exposure $M \cdot t$, energy resolution ΔE
- most important: extremely low background rate B at Q value
- current (MAJORANA, GERDA) & future (LEGEND) experiments: $\Rightarrow 10^{28} yr$
- DM-evidences: velocity dispersion of galaxy clusters, galactic rotation curves
- local WIMP density: $\rho_{DM,local} = 0.3 \ GeV/cm^3$ (1 WIMP/coffee cup)

4.2 Dark Matter: candidates

- A huge variety of candidates from the very light up to super-massive DM
- **mass scale**: from $10^{-21} \dots 10^{25} eV$
- ultra-light DM (ALPs: axion-like particles, hidden photons,...)
- **⊘** axions (strong *CP* − problem)
- **oldsymbol{B}** DM on *sub GeV* scale
- WIMPs: neutralinos
- primordial black holes (MACHOs)

Dark matter candidates & cosmology

Important cross-checks via DM role in early & present universe

- no particle in the SM can play the role of Dark Matter candidate: look beyond
- stable over Hubble-time $t_H = 13.8 \cdot 10^9 \ yr$ against decay: $\tau_{decay} \gg t_H$ or radiative emission (BH)
- current number density must reproduce the DMdensity $\Omega_{DM} = 1 \text{ GeV m}^{-3}$
- weak interactions only $(Z^0, h \text{ bosons})$

Dark matter candidates & cosmology

Important cross-checks via DM role in early & present universe

- production in early universe: thermal (WIMPs) or non-thermal processes (axions)
- must be 'cold', i.e. moving non-relativistically
 ⇒ 'bottom-up' formation of large-scale structures
- de-Broglie wavelength $\lambda_{deBroglie} < r_{dg}$ (radius of a dwarf galaxy, *few kpc*)
- reproduce observed <u>local</u> DM-density (0.3 *GeV* cm⁻³)

Dark matter candidates: the case of neutrinos

Massive neutrinos are part of the Dark Matter in the universe

- production in early universe: thermal processes via W^{\pm} , Z^0 339 v's cm⁻³
- are 'hot', i.e. moving relativistically ($m_{\nu} < 0.8 \ eV$) ⇒ 'top-down' formation of large-scale structures
- de-Broglie wavelength $\lambda_{deBroglie} > r_{dg}$ (radius of a dwarf galaxy, *few kpc*)

Dark matter candidates: the case of neutralinos

Weakly Interacting, Massive Particles: WIMPs or, specifically, neutralinos

- production in early universe: thermal processes via W^{\pm} , Z^{0} bosons
- correct abundance if weak interaction *xsec*
- cosmologically stable due to new intrinsic quantum number (R_P)
- CDM: non-relativistic velocity distribution, allows bottom-up evolution of structures

Dark matter candidates: the case of neutralinos

Weakly Interacting, Massive Particles: WIMPs or, specifically, neutralinos

- production in early universe: non-thermal processes via symmetry breakting
- correct abundance if
 mass & *xsec* in region
- cosmologically stable due to tiny mass (*µeV*)
- CDM: non-relativistic velocity distribution, allows bottom-up evolution of strucutures

Dark matter candidates: mass vs. cross section

- σ_{tot}/pb) - two key parameters: mass m [GeV], σ_{tot} [$pb = 10^{-36} cm^2$] -10 (log -15 - **neutrino**: prototype of a weakly section -20 interacting particle -25 - only LH states interact via Cross -30 W^{\pm}, Z^0 bosons -35
- electroweak ν –cross section scale:

 $\sigma_{v,tot} = 10^{-8} \dots 10^{-4} \, pb$

An overview of DM-particles

Dark matter candidates: heavy, cold DM

Neutralinos & other WIMPs

- **neutralino** χ : prototype of a weakly interacting massive particle (WIMP)
- mass $m = GeV \dots TeV$ scale \Rightarrow determines number density
- neutralinos are superpositions of 4 states: \Rightarrow mixing efffects reduce σ_{tot}
- electroweak χ cross section scale:

$$\sigma_{\chi,tot} = \ 10^{-12} \dots 10^{-6} \ pb$$

Dark matter candidates: light, but cold DM

Axions & Axion-Like Particles (ALPs)

- **axion** *a*: prototype of a weakly interacting slim particle (WISP)
- mass $m = neV \dots meV$ scale \Rightarrow determines interaction rate
- axions 'solve' the strong CP problem of QCD
- interaction via 'Primakoff effect':
 - *B* –field: conversion into/from $\gamma's$

Exp. Particle Physics - ETP

29.12.1959

Dark matter candidates: light, lighter, & beyond...

There 's plenty of room at the bottom

interacting slim particle (WISP)

- **axion** *a*: prototype of a weakly

- a large parameter space to cover
- message from Richard Feynman:

ultra-light particles (WISPs)

13 Dec. 21, 2022

G. Drexlin – ATP-1 #13

Exp. Particle Physics - ETP

 \Rightarrow at *GUT* –scale & beyond

- often associated with inflationary, very early phase of the universe

> Rocky Kolb Síze does matter

Dark matter candidates: heavy, heavier, GUT – scale

DM-related theories: Super-Symmetry (SUSY)

A new space-time symmetry between bosons fermions

- SUSY postulate: each SM particle has a heavy (TeV) SUSY superpartner
- *SUSY* & *SM* particles with a **different spin statistics** (fermions \Leftrightarrow bosons), as spin differs by $\Delta s = \frac{1}{2}$
- *SUSY* operator **Q**:

 $Q |boson\rangle = |fermion\rangle$ $Q |fermion\rangle = |boson\rangle$

transforms bosons into fermions & v.v.

DM-related theories: SUSY name conventions

SUSY postulate of heavy superpartners with $s = \frac{1}{2}$ and s = 0

- SUSY postulate: each SM particle has a heavy (TeV) SUSY superpartner
- SUSY & SM particles: ~ identical properties, except mass & spin statistics
- SUSY bosonic superpartners sfermion (\tilde{q} : squark, $\tilde{\ell}$: slepton)
- SUSY fermionic superpartners ... –inos ($\tilde{\gamma}$: photino, \tilde{g} : gluino, \tilde{H} : Higgsino,...)

DM-related theories: *SUSY* origins at KIT

1973: Wess & Zumino postulate the first supersymmetric quantum theory

- Wess-Zumino model

Julius Wess (KIT) Bruno Zumino (CERN)

director of the KIT institute for Theoretical Physics from 1968-1990

Julius Wess (1934-2007)

- KCETA regularly awards the Julius Wess prize

Nuclear Physics B70 (1974) 39-50. North-Holland Publishing Company

SUPERGAUGE TRANSFORMATIONS IN FOUR DIMENSIONS

J. WESS Karlsruhe University

> B. ZUMINO CERN, Geneva

Received 5 October 1973

Abstract: Supergauge transformations are defined in four space-time dimensions. Their commutators are shown to generate γ_5 transformations and conformal transformations. Various kinds of multiplets are described and examples of their combinations to new representations

SUSY: a spontaneously broken symmetry

Quantum vacuum not invariant under SUSY – transformations

- result:

masses of SM – particles & SUSY – particles not identical

- mass-relation: $m(SM) \ll m(SUSY) = 0.1 \dots 10 TeV$
- scale of SUSY symmetry breaking: expected at energies $E_{SUSY} = 0.1 \dots 10 TeV$
- **origin** of SUSY symmetry breaking: unknown, why the scale $E_{SUSY} < 10 TeV$? further hierarchy problem: why $E_{SUSY} \ll E_{GUT}$?

INSERTION: what if ... SUSY was NOT broken?

assumption: quantum vacuum is invariant under SUSY –transformations

- result:

masses of SM - particles & SUSY - particles are identical

- Pauli exclusion principle not valid for bosonic superpartner selectron (\tilde{e}) of electron (e): no extended Bohr orbitals possible...

Indirect hints for SUSY comes from the running of coupling constants α_i

- *GUT* (Grand Unified Theory) – based scenarios expect a unfication of forces at large scale $\Lambda_{GUT} \sim 10^{16} \text{ GeV}$ (S. Glashow, H. Georgi, 1974)

Indirect hints for SUSY comes from the running of coupling constants α_i

- *GUT* (Grand Unified Theory) – based scenarios expect a unfication of forces at large scale $\Lambda_{GUT} \sim 10^{16} \text{ GeV}$ (S. Glashow, H. Georgi, 1974)

SM: no gauge unification observed in running of coupling constants α_i

- Wim de Boer (ETP) *et al.* make a **fit** to couplings: *`in the SM the couplings do NOT meet…!'* EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-PPE / 91-44 22 March 1991

IЕКР-КА / 91-01

Comparison of Grand Unified Theories with electroweak and strong Coupling Constants measured at LEP

´my SUSY –

- Julius:

\blacksquare SM: no gauge unification observed in running of coupling constants α_i

- Wim: 'we find: only in a SUSY – scenario all couplings meet at one energy scale!

U. Amaldi

SUSY and experimental verification at the LHC

LHC with *cms* – energy of $\sqrt{s} = 13.6 TeV$ allows dedicated *SUSY* – searches

- search for SUSY – superpartners at the TeV –scale in pp – collisions

Building a viable DM-candidate from SUSY – particles: a how-to approach

- search for SUSY – superpartners at the TeV –scale in pp –collisions

SUSY: a closer look at the superpartner properties

Building a viable DM-candidate from SUSY – particles: a how-to approach

- SUSY superpartners: identical properties, except mass m & instrinsic spin s
- **squarks**: identical strong interaction as quarks (3 colours)
- **sleptons**: identical electromagnetic interaction as leptons e, μ, τ
- sneutrinos, neutral gauginos:
 mixing effects as in case of v's
 ⇒ mass states for propagation
 ⇒ flavour states for interaction

SUSY: MSSM, the minimum extension of the SM

Building a viable DM-candidate from SUSY – particles: a how-to approach

- *MSSM*: *M*inimal Supersymmetric Standard *M*odel: **105 new parameters** particle masses, mixing angles, *CP* phases, life-times,...
- minimal extension of new particles
 & interaction
- motivation: **stabilisation** of the **light Higgs boson** at 125 *GeV* against quantum-loop-corrections
- SUSY masses of MSSM expected in range M = 0.1 ... 1 TeV but: no signal at LHC so far...

SUSY: important properties with view to DM

R – parity: a key property of SUSY for DM & the stability of the proton p

- introduction of a new, multiplicative quantum number for all particles

ity
$$R_P$$
: $R_P = (-1)^{3 \cdot B + L + 2S}$ or $R_P = (-1)^{3 \cdot (B - L) + 2S}$

B: baryon number L: lepton number S: spin

- SM particles: $R_P = +1$ (even) SUSY particles: $R_P = -1$ (odd)
- resulting superpartner properties:

a) production via *SM* – particles: only *SUSY* – pairs can be emitted

b) SUSY – superpartners only decay into superpartners (not SM –particles)

R - par

SUSY: important properties with view to DM

R – parity: a key property of SUSY for DM & the stability of the proton p

SUSY and the constrained MSSM (cMSSM)

Karlsruhe Institute of Technolo

cMSSM: the most 'economic' SUSY – model with only 5 new parameters

- all superpartner masses are assumed to be identical at the GUT scale

cMSSM: building of a viable DM-candidate

A weakly interacting massive, mixed DM-particle (which is also stable)

- neutral particles with weak interactions only, as no exotic isotopes were observed
 - \rightarrow no squarks (charge, colour) \rightarrow no charged leptons (charge)
 - \rightarrow no gluinos (colour)
 - \rightarrow no Winos (charge)
- remaining DM-candidates:
 - \rightarrow gauginos: photino $\tilde{\gamma}$, Zino \tilde{Z} Higgsino \tilde{H}
 - \rightarrow sneutrinos: $\tilde{\nu}_e$, $\tilde{\nu}_\mu$, $\tilde{\nu}_\tau$

cMSSM: a closer look at sneutrinos

Sneutrinos as superpartners of neutrinos: can they be a DM-candidate?

- neutral particles with weak interactions only M
- heavy, scalar particles at the TeV mass scale (CDM) \checkmark
- but: weak interaction rates are identical to the ones of $v's \Join$ \Rightarrow very early universe: **too large annihilation rate**!
 - ⇒ present density in the universe is much too small ($\Omega_{DM} \ll 0.27$)
- lesson: weak interaction rate of a successful DM-candiate must be significantly smaller than the one neutrinos!

cMSSM: a closer look at gauginos & Higgsinos

Neutral fermionic superpartners: can they be a DM-candidate?

- we have 4 interaction eigenstates : 1 photino $\tilde{\gamma}$ 1 Zino \tilde{Z} 2 Higgsinos \tilde{H}
- remember neutrino oscillations: strong mixing effects due to identical quantum numbers flavour states $v_e, v_\mu, v_\tau \Leftrightarrow$ mass states m_1, m_2, m_3
- we now mix the 4 flavour states photino $\tilde{\gamma}$, Zino \tilde{Z} and the 2 Higgsinos \tilde{H} to 4 mass eigenstates: neutralinos
- **WIMP** miracle: weak interaction rate of a mixed state $(\tilde{\gamma}, \tilde{Z}, 2 \tilde{H})$ possesses just the required (annihilation) interaction rate for $\Omega_{DM} \approx 0.27$ (!!!!)

Higgsii

cMSSM: an even closer look at Higgsinos

How many superpartners for the Higgs boson of the SM?

- we have 5 physical Higgsino states in the MSSM: \tilde{h} , \tilde{H}^0 , \tilde{A} , \tilde{H}^{\pm}
- 1 rather light (*SM* –like) state : \tilde{h} , plus others (charged \tilde{H}^{\pm} do not mix, as well as pseudoscalar \tilde{A})
- in *SUSY* we have to consider 2 Higgsinos \tilde{H}^0 : for u –type particles \tilde{H}_u^0 , for d –type particles \tilde{H}_d^0
- for mixing to mass states we now have 4 states:
 photino γ
 Zino Z
 2 Higgsinos H⁰_u H⁰_d

Higgsi

Exp. Particle Physics - ETP

cMSSM: a comparison of neutralinos & gauginos

Due to mixing we have flavour eigenstates & mass eigenstates

- we have 4 flavour states:

gauginos photino $\tilde{\gamma}$ Zino \tilde{Z} 2 Higgsinos $\tilde{H}_{u}^{0} \tilde{H}_{d}^{0}$ these states do interact, but have no well-defined masses & thus do not propagate

- we have **4 mass states**: **neutralinos** lightest ... heaviest $\tilde{\chi}_1^0 \ \tilde{\chi}_2^0 \ \tilde{\chi}_3^0 \ \tilde{\chi}_4^0$ these states propagate in space with well-defined masses, but have to mix to interact

Carlsruhe Institute of Technolog

And finally: the neutralino as viable DM candidate

Stabilising the lightest neutralino $\tilde{\chi}_1^0$ via its intrinsic R-parity R_P as WIMP

- the LSP (Lightest Supersymmetric Particle) is expected to be stable over cosmological time scales due to its intrinsic $R_P = -1$
- accordingly, if the lightest neutralino $\tilde{\chi}_1^0$ is the LSP of *SUSY*, it is an excellent DM-candidate at the TeV scale

Neutralino:
$$\tilde{\chi}_{1}^{0} = c_{1} \cdot \tilde{\gamma}^{0} + c_{2} \cdot \tilde{Z}^{0} + c_{3} \cdot \tilde{H}_{u}^{0} + c_{4} \cdot \tilde{H}_{d}^{0}$$
 flavour states
Photino Zino Higgsinos (up, down)

- the (unknown) flavour ratios c_i determine interaction rates of the $\tilde{\chi}_1^0$

- it can annihilate with itself (no anti-neutralinos)
- mass on TeV scale, very weakly interacting
- searches at LHC, galactic DM-halo, DM-detectors

36 Dec. 21, 2022 G. Drexlin – ATP-1 #13 ***See lecture #11, p. 27-29**

Exp. Particle Physics - ETP

Wanted: the lightest neutralino $\tilde{\chi}_1^0$ as WIMP-DM

- SUSY expects neutralinos to be Majorana-type* particles

Properties of neutralinos & searches for SUSY – WIMPs

Putting SUSY on the experimental testbed

Feynman diagrams for WIMP searches at LHC, galactic halo & DM-detectors

- before we start to discuss DM-searches, we quote Richard Feynman himself

It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong.

— Richard P. Feynman —

AZQUOTES

Geprüfte SUSY

Putting SUSY on the experimental testbed

Feynman diagrams for WIMP interactions

- flavour components of the lightest neutralino $\tilde{\chi}_1^0$ will interact via two exchange bosons
 - a) neutral vector boson Z⁰ = **spin-dependent** process
 - b) neutral Higgs bosons H, h
 - = spin-independent process
 (scalar interaction)
- relative coupling strengths unknown, but very small in both cases

Putting SUSY on the testbed at CERN's LHC

Feynman diagram for WIMP production from partons inside a proton

direct production of neutralinos
 at a high-luminosity collider at the
 TeV – scale (chapter 4.3)

Putting SUSY on the testbed at the galactic halo

Feynman diagram for WIMP annihilation at the center of the galaxy

- **indirect searches** for the annihilation reactions of neutralinos at the inner part of the galactic halo (chapter 4.4)

Exp. Particle Physics - ETP

Putting SUSY on the testbed at a DM detector

Feynman diagram for WIMP scattering in an underground DM-detector

 direct searches for elastic scattering processes of neutralinos at large DM detectors (chapter 4.5)

4.3 WIMP search at the LHC

Direct production of WIMPs in pp -collisions at $\sqrt{s} = 13.6 TeV$

RCAP: LHC beam parameters

Search for rare SUSY – events is boosted by high collider luminosity L

- LHC: a big step forward in increasing the luminosity of particle collisions – design value

$$L = 10^{34} \ cm^{-2} s^{-1}$$

#p /

bunch

transversal

beam size

- how to calculate the **luminosity** *L* from a beam:

 $L = f \cdot n \cdot$

bunches

frequency

Transversal view of: inner tracker, ECAL, HCAL, muon chambers

Outlook: hunting for signatures of *SUSY*

Signatures of neutralinos: missing energy / transversal momentum

