

Astroparticle physics I – Dark Matter

WS22/23 Lecture 15 Jan. 18, 2023

www.kit.edu

Dark Matter Searches: LHC & DM-Annihilation in gammas

- LHC: search for SUSY –decay cascades from gluinos to neutralinos lepton/hadron pairs, missing E_T , p_T
- no signal in pp collisions, Run2: limit $M(\tilde{\chi}^0) \ge 1 TeV$, Run3 since mid-2022, HL-LHC: 2029-38, then: FCC (?)
- **DM-annihilation**: particle- (decay channels) & astro- physics (halo profile) to calculate **messenger spectrum**: γ , ν , e^+ , \overline{p} ,...
- DMA into gammas

GeV – scale: FERMI excess – Hooperon or ms – pulsars?

TeV – scale: IACTs to GC – many astrophysical sources

Positrons as DMA messengers

Positron signal is challenging due to e^+ transport characteristics in galaxy

- key to DM-sensitivity: careful study of all transport phenomena of e^+ in galactic $B^$ **fields** (if source is at distance d = kpc) !

deflection in galactic B – field

⇒ huge energy losses during propagation: e⁺ only from local DM-halo

Positrons as DMA messengers

- A closer look at transport phenomena of e^+ from DMA in the galactic halo
- key systematics:
 - diffusion, convection
 - energy losses ΔE : absolute values & as function of $E(e^+)$
 - alignment of B fields
 - radiation fields
 - 'normal' CR -sources

alignment of B — fields in a typical spiral galaxy

Positrons as DMA messengers

A closer look at a possible e^+ signal from DMA (for different masses of χ^0)

Background to DMA searches: astrophysical e^+

- origin of astrophysical positrons has previously been studied in detail:

interactions of cosmic radiation with the interstellar medium (ISM): dust, gas (hot, intermediate, cold)

Background to DMA searches: astrophysical e^+

Very limited range of e^+ from astrophysical sources or DMA

- energy losses during long-distance (kpc) propagation of astrophysical e^+ :

major losses via: **synchrotron radiation** +2 & **inverse Compton** effect (off star light & Cosmic Microwave Background CMB) +7

Searching for DMA with e^+ : AMS-02

Alpha Magnetic Spectrometer (AMS): a particle detector onboard the ISS

- search for DM annihilation (e^+ , \overline{p} , ...)
- search for antimatter $(\overline{He}, ...)$
- investigations of cosmic radiation: flux, energies, composition

start: May 16, 2011 with STS134

Searching for DMA with e^+ : AMS-02

Alpha Magnetic Spectrometer (AMS): a particle detector onboard the ISS

- ETP has participated in AMS-02 from 2002...2020 (contributions to the TRD)

AMS-02 | The Alpha Magnetic Spectrometer Experiment (ams02.space)

Exp. Particle Physics - ETP

Searching for DMA with e^+ : AMS-02 setup

AMS-02 results: a high-energy excess of e^+

AMS-02 confirms long-standing earlier observations: excess of positrons!

- the fraction of cosmic e^+ does indeed increase for high energies, but we do not (yet??) see a cut-off at neutralino mass $m(\chi^0)$
- is this the 'smoking gun' of DMA & evidence for DM?
- we need to check for other astrophysics scenarios first...

AMS-02 goals: observe high-energy e^+

AMS-02 sees energetic positrons almost up to the TeV-energy scale!

- the 'golden' road to finding DM via e^+ spectroscopy...
- a) astrophysical background from ISM is diffuse & falls off rather steeply for all high-energy positrons

b) DMA signal

if the neutralino mass is on TeV-scale: clear **excess of high-energy positrons**

AMS-02 results: a high-energy excess of e^+

What is its origin – DMA signal or astrophysical e⁺ from nearby pulsars?

AMS-02 results: a high-energy excess of e^+

- What is its origin DMA signal or astrophysical e⁺ from nearby pulsars?
- difficult interpretation of AMS-02 data & e^+ spectroscopy...

b) signal from DMA at *GeV* ... *TeV* scale

AMS-02 experiment: the future

The search for DMA with messenger particles e^+ , \overline{p} will continue...

4.4.2 Neutrinos

Searching for DMA in the center of the galaxy* & the sun with neutrinos

16 Jan. 18, 2023 G. Drexlin – ATP-1 #15 *See chapt. 2.1.2 - IceCube results (Lect. #7, #8) Exp. Particle Physics - ETP

Neutrinos as DMA messengers from the solar core

Interesting scenario: WIMPs get trapped by the Sun

- WIMPs can scatter off solar matter & thereby
 lose energy ⇒ they get captured & sink to the core
- there will be an **equilibrium** of the DM capture rate R_C & the DM annihilation rate $R_{DMA} \Rightarrow$ do we see DMA? & how can we discriminate against solar neutrinos?

Carlsruhe Institute of Technolog

DMA in the core of the sun?

MeV

- Standard scenario: MeV-neutrinos from the solar core
 - pp fusion reactions in the core of the sun*

DMA in the core of the sun?

Ge

SUSY – scenario: GeV-neutrinos from the solar core

- spin-dependent interaction* of WIMPs with solar matter via exchange of a Z^0 **boson**
- NC scattering off H atoms results in an energy loss of WIMP-neutralinos: subsequent **capture in the sun**

- calculation of capture rate R_c depends on WIMP parameters:

$$density \qquad \text{velocity} \qquad \text{xsec} \qquad \text{mass}$$

$$R_{C} \cong 3.35 \times 10^{20} \, s^{-1} \cdot \left(\frac{\rho_{lokal}}{0.3 \, GeV \, / \, cm^{3}}\right) \cdot \left(\frac{270 \, km \, / \, s}{v_{lokal}}\right)^{3} \cdot \left(\frac{\sigma_{spin}}{10^{-6} \, pb}\right) \cdot \left(\frac{100 \, GeV}{m\chi}\right)^{2}$$

19 Jan. 18, 2023 G. Drexlin – ATP-1 #15 ***because** Z^0 – vector boson has a spin S = 1 Exp. Particle Physics - ETP

Hunting GeV – scale neutrinos from DMA

GeV – v's from the sun

DMA does not change the energy balance of the sun from pp - or CNO - chains

ICECUBE

DeepCore extension of IceCube for studies at GeV – scale

Hunting GeV – scale neutrinos from DMA

GeV – v's from the sun with 6 DeepCore strings embedded in IceCube

- 6 new PMT -strings each with 40 PMTs
 - ⇒ improved sensitivity
 to detect v´s from
 DMA in the solar core
- DMA-search with v_{μ} with $E(v_{\mu}) = 10 \ GeV \dots 1 \ TeV$

INSERTION: could there be WIMP burning stars?

Why not settle for a new energy source: burn WIMPs instead of hydrogen!

- an additional stellar energy source: WIMP annihilation
- stars located very close ($r < 1 \ lyr$) to SMBH* (Sgr A*)

are embedded in a '**spike**' of the galactic DM-halo core

INSERTION: could there be WIMP burning stars?

- Why not settle for a new energy source: burn WIMPs instead of hydrogen!
- local DM-density ρ_{DM} ($r < 1 \ lyr$) > $10^9 \ g/cm^3$
- stars will capture a huge number of WIMPs which will annihilate in the collision of stellar cores
- signature of ´WIMP burners´: modified stellar parameters
 ⇒ completely convective stars

INSERTION: could there be WIMP burning stars?

Why not settle for a new energy source: burn WIMPs instead of hydrogen!

- dark stars in very early universe
- early stars will capture a huge number of WIMPs:
 - ⇒ filled with hydrogen & 1/1000 dark matter

- signature could be revealed by the JWST

4.5 Direct detection methods for WIMPs

We want to directly detect WIMPs from the galactic DM-halo – but how?

- WIMP-interactions with the material of our detector via elastic scattering processes off a nucleus!

How to directly detect a WIMP – the basics

How to directly detect a WIMP – the basics

To estimate the number of our DM-events we need detector physics:

- what is the answer of our solid-state detector to an elastic nuclear recoil?

 E_R detection of recoil enery of the target nucleus in the solid state

⇒ good knowledge of **detector properties**

How to directly detect a WIMP – the basics

To estimate the number *R* **of our DM-events we bring all factors together:**

Estimating the WIMP flux

To estimate the number *R* **of our DM-events we bring all factors together:**

Properties of the WIMP flux: motion of the Sun

We expect that a WIMP 'wind' blows with a preferred direction

 motion of the Sun around the Galactic Center (GC) induces a preferred WIMP direction: the WIMP wind

Properties of the WIMP flux: Cygnus region

We expect that a WIMP 'wind' blows with a preferred direction

 motion of the Sun around the Galactic Center (GC) induces a preferred WIMP direction: the WIMP wind

Properties of the WIMP flux: Cygnus region

We expect that a WIMP 'wind' blows with a preferred direction

preferred WIMP direction (WIMP wind):
 energetic nuclear recoils (here:
 threshold = 20 keV) from Cygnus region

How do YOU best remember (visualize) our local DM density?

B) 2 squirrels (777 g) over Earth volume

Karlsruhe Institute of Technology

Properties of the galactic WIMP halo

The galactic DM-halo: what is its shape, what is the WIMP velocity profile?

- no large-scale rotation of entire halo around the center of the galaxy
- each WIMP follows individual Kepler orbit around the galactic center
- from this a specific WIMP velocity profile f(v) for varius **halo radii** rcan be calculated
- shape: we expect a tri-axial ellipsoid
- DM-halo properties can be traced by stellar velocity profile*

galactic WIMP halo: velocity profile

• We are interested in the WIMP velocity profile at our distance r = 8 kpc

- Standard Halo Model (SHM) compared to other theoretical calculations:

Properties of the galactic WIMP halo

• the WIMP velocity profile at our distance r = 8 kpc: cut-off parameter for f(v)

- for speeds of $v \ge 500 \dots 600 \ km/s$: WIMPs will escape galactic DM-halo

Properties of the galactic WIMP halo: implications

There are fundamental implications of f(v) for direct DM searches

- WIMPs in galactic DM halo move **non-relativistically** with $\beta \approx 10^{-3}$

- kinetic energy E_{kin} of WIMPs:

$$E_{kin} = \frac{1}{2} \cdot M(\chi^0) \cdot \beta^2$$
$$| \qquad |$$
$$100 \ GeV \quad 10^{-6}$$
$$E_{kin} \approx 100 \ keV$$

Properties of the galactic WIMP halo: implications

There are fundamental implications of f(v) for direct DM searches

- a nucleus will receive a low-energy recoil of a few tens of keV (at most)

Direct detection of WIMPs: modulation of flux

Earth's rotation around Sun casues a (smaller) variation of the WIMP flux

- velocity vectors of the Sun \vec{v}_S & the Earth \vec{v}_E add:
 - \Rightarrow seasonal variation of the WIMP velocity distribution f(v)
- this results (for the local coordinate system of the DM-detector) in the following time dependence:

$$v(t) = v_S + v_E \cdot \cos(60^\circ) \cdot \cos\omega(t - t_0)$$

Direct detection of WIMPs: modulation of flux

Earth's rotation around Sun casues a (smaller) variation of the WIMP flux

Direct detection of WIMPs: interactions

Neutralinos can interact via two exchange interactions: scalar / vector

- scalar interaction via light, heavy Higgs H, h

σ_{SI}: Spin Independent

- Higgs couples to the **mass distribution** of the target nucleus
- coupling inside a nucleon:
 not only to valence quarks but also to sea quarks, and to massless gluons (via loops)

nucleon

neutralinos

 $\widetilde{\chi}_1^0$

 Z^0

 $\widetilde{\chi}_1^0$

s = 0

Ηh

Direct detection of WIMPs: interactions

Neutralinos: scalar, spin-independent interaction cross section $d\sigma_{SI}/dq^2$

$$\frac{d\sigma_{SI}}{dq^2} \sim \frac{1}{\pi \cdot v^2} \cdot \left[f_p \cdot Z + f_n \cdot \left(A - Z \right) \right]^2 \cdot F(q^2)$$

q²: momentum transfer

- v: WIMP velocity
- A, Z: nucleon number A

proton number Z neutron number (A - Z)

 f_p , f_n : spin-independent WIMP-couplings to protons, neutrons (*SUSY* model) as $m_p \approx m_n$ we excpect $f_p = f_n$

Direct detection of WIMPs: interactions

Neutralinos: scalar, spin-independent interaction cross section $d\sigma_{SI}/dq^2$

$$\frac{d\sigma_{SI}}{dq^2} \sim A^2 \cdot F(q^2)$$

a large nucleus with A > 100 is very helpful

for $f_p = f_n$

scattering amplitudes off all nucleons add coherently

Xenon is best: $A \approx 130$

R. Hofstadter

 $\frac{d\sigma_{SI}}{2} \sim A^2 \cdot ($

Exp. Particle Physics - ETP

Direct detection of WIMPs: the form factor $F(q^2)$

Neutralino interactions: the important nuclear form factor $F(q^2)$

 analogue to electron scattering off a nucleus at high momentum transfer (see Mod. Ex. Phys. III)

 $F(q^2)$

