

Astroparticle physics I – Dark Matter

WS22/23 Lecture 16 Jan. 19, 2023

www.kit.edu

Recap of Lecture 15

Indirect and direct searches for CDM neutralinos

- positrons: **clear excess** ($E = 10 \dots 1000 \text{ GeV}$) compared to 'classical' models origin: a) CDM annihilation in local DM-halo b) emission of nearby pulsars
- WIMP-burning stars close to galactic center?
- direct searches for CDM: **elastic nuclear recoils** with typical recoil energy $E_R \approx few \, keV$ (WIMP wind from Cygnus, small yearly modification of v)
- WIMP interaction σ_{SI} : Spin Independent via Higgs $h, H = \sigma_{SD}$: via Z^0
- cross section: $d\sigma/dq^2 \sim A^2 \cdot F(q^2) \Rightarrow$ large nucleus, low momentum transter coherent interaction \Rightarrow large de-Broglie wavelength

WIMP scattering off nuclei: form factor $-F(q^2)$

Implications of the loss of coherence at high recoil energies

- we aim for heavy nuclei with large A & large nuclear radius R_i (\Rightarrow xenon)

- challenge:

the loss of coherence already starts for smaller values of the momentum transfer q^2 or nuclear recoil energy E_R

$$\sim A^2 \cdot F(q^2)$$

WIMP scattering off nuclei: types of interaction

Karlsruhe Institute of Technolo

Neutralinos can interact via two types of exchange particles: $H h \iff Z^0$

- **spin-dependent** interaction via Z^0 – **boson**

σ_{SD}: *S*pin *D*ependent

- exchange of an intermediate vector boson Z^0 with spin S = 1
- many SUSY models 'favour' Z⁰:
 we expect rather 'large' couplings

WIMP scattering off nuclei: spin-dependent

Neutralinos can couple to the overall spin J of a nucleus via Z⁰ exchange

- Scattering amplitude depends on the spin orientation
- for σ_{SD} there is no increase in the interaction rate due to coherence, as Z^0 couples to the total nuclear spin J
- despite the SUSY models 'favouring' Z^0 : we expect rather small contributions of σ_{SD} to total elastic WIMP-scattering cross section

5

 $\widetilde{\chi}_1^{\prime}$

WIMP scattering off nuclei: spin-dependent

Neutralinos can couple to the overall spin J of a nucleus via Z⁰ exchange the target nucleus must possess J ≠ 0

RECAP: Spin J of a nucleus & nucleon spins

Nucleons inside a nucleus are paired: nuclear spin from unpaired nucleon

- nuclear spin J arises from total angular momentum L of unpaired nucleon

Suitable detector materials for σ_{SD}

- nuclear spin J due to unpaired nucleon

Suitable detector materials for σ_{SD}

Nuclei with unpaired nucleon that can be used as WIMP detector

- nuclear spin J due to unpaired nucleon

solid-state detector (Edelweiss)

Suitable detector materials for σ_{SD}

Nuclei with unpaired nucleon p, n that can be used for DM-searches

- spin-dependent coupling to unpaired proton (a_p) or neutron (a_n)

detector type	isotope	fraction	protons	neutrons	spin J	coupling
NaJ	²³ Na	100 %	11	12	3/2	a_p
(scintillator)	¹²⁷ I	100 %	53	74	5/2	a_p
LXe	¹³¹ Xe	21.2%	54	77	3/2	a_n
(liquid TPC)	¹²⁹ Xe	26.4 %	54	75	1/2	a_n
Ge (bolometer)	⁷³ Ge	7.8 %	32	41	9/2	a_n

Cross section of spin-dependent WIMP scattering

• We can calculate the spin-dependent interaction rate of WIMPs via Z^0

- WIMPs moving with velocity v in the galactic DM-halo undergo an elastic scattering event with momentum transfer q^2

Fermi coupling constant

⇒ **Spin 'enhancement' factor** (typcially 0.2 ... 0.5)

Spin structure function S(q): spatial distribution of spin inside the nucleus for different q

The Spin 'enhancement' factor C_{spin}

We now consider in detail how the WIMP couples to the spin of the target

$a_{p,n}$: WIMP-coupling factor to p, n

takes into account the spin distribution on the quark level

(strength strongly depends on WIMP-flavour composition of *SUSY* – model)

$$C_{Spin} = \frac{8}{\pi} \cdot \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2 \cdot \frac{J+1}{J}$$

 $\langle S_{p,n} \rangle$: expectation values for p, n - spin in target nucleus (follows from detailed shell model calculations)

J : nucelar spin due to the unpaired nucleon (proton/neutron)

WIMPs: how do they couple to the nucleus?

• We now compare again the scalar (σ_{SI}) to spin-dependent (σ_{SD}) scattering

- we 'zoom out' from the **parton level** to **nucleons** then to the nucleus

1 - level of partons: q, g

 χ^0 – interaction with *quarks, gluons* χ^0 – coupling from specific *SUSY* – model

2 - level of nucleons: p, n

kinematics & spin within a *nucleon p, n* determined via parton-distributions (valence/sea-quarks, gluons)

Karlsruhe Institute of Technolog

WIMPs: how do they couple to the nucleus?

• We now compare again the scalar (σ_{SI}) to spin-dependent (σ_{SD}) scattering

- we 'zoom out' from the parton level to nucleons then to the **nucleus**

3 – level of nucelar structure: Ar, Ge, Xe, ...

- χ^0 interaction with nucleus
 - ⇒ nuclear wave function using nuclear shell model
 - ⇒ form factors to describe the mass / spin distributions within the nucleus
 - kinematics of process coherent nuclear recoil

More details on the elastic nuclear recoil

We now look in more detail at the WIMP signal due to the elastic scattering

due to the low energy transfer involved in a WIMP scattering off a nucleus:
 we do not have to consider nuclear excitations A* (even for uu – nuclei)
 ⇒ purely elastic reaction kinematics*

- parameters:

- a) relative velocities
- b) masses M_{χ} and M_N
- c) scattering angle θ

* see Class. Exp. Phys. I

Reaction kinematics of WIMP scattering

We can use non-relativistic kinematics due to rather low WIMP velocities

$$E_{kin} = \frac{1}{2} \cdot M(\chi^0) \cdot \beta^2 \implies E_R < 100 \ keV$$

small nuclear recoil energy E_R : few tens of keV at maximum

- parameters:

a) relative velocities: $v \approx 10^{-3} \cdot c$ (WIMP in DM-halo)

b) masses M_{χ} and M_N : $M_{\chi,N} \approx 100 \ GeV$

c) scattering angle θ : $\theta = 0^{\circ} \dots 180^{\circ}$ (forward / backward)

Reaction kinematics of WIMP scattering

We now describe WIMP scattering off a target nucleus which is at rest

$$E_{R} = 2 \cdot \frac{\mu}{M_{\chi} + M_{N}} \cdot E_{kin} \cdot (1 - \cos \theta)$$

 E_R : recoil energy of nucleus (usually in keV) E_{kin} : kinetic energy of WIMP (usually in keV)

µ: reduced mass of WIMP-nucleus system

$$= \frac{M_{\chi} \cdot M_N}{M_{\chi} + M_N}$$

Reaction kinematics: equal masses

Optimum transfer of energy & momentum which maximises E_R for given E_{kin}

$$E_{R,max} = \frac{1}{2} \cdot M_N \cdot \beta^2$$

- identical mass scale

$$M_{\chi} = M_N : \ \boldsymbol{\mu} = \frac{\boldsymbol{M}_N}{2}$$

 $\Rightarrow \text{ recoil nucleus receives}$ full kinetic energy E_{kin} of incoming WIMP

 $\widetilde{\chi}_1^0$ E_{kin} 130 GeV 130 GeV E_R Xe recoil 130 GeV WIMP scatters off xenon $\widetilde{\chi}_1^0$

Reaction kinematics: non-equal masses

non-optimum transfer of energy & momentum which impacts E_R

INSERTION: χ^0 – SCATTERING OFF ELECTRONS?

Why can't we use electrons as target for WIMP scatterings?

$$E_{R,max} = 2 \cdot M_e \cdot \beta^2$$

- non-identical mass scale
 - $M_{\chi} \gg M_e: \mu = M_e$
- $\Rightarrow \text{ recoil electron receives}$ only part of kinetic energy E_{kin} of incoming WIMP $E_{R,max}$ is on the eV-scale (undetectable)

Karlsruhe Institute of Technology

WIMP scattering in an actual DM-detector

How do I optimize my detector to observe elastic WIMP scattering?

- now that we have analysed the kinematics of elastic WIMP scattering, which are the most **important detector parameters** to observe it?
- a) how large should the target mass of my detector be?
- b) how low should the **energy threshold** of my detector be?
- c) how many WIMP scatterings will my detector see?

WIMP scattering in an actual DM-detector

We first calculate the expected number of elastic WIMP scatterings

- expected DM-event rate R in a detector with number N_{nucl} of target nuclei

WIMP flux as functioncross section as functionaveragedof kinetic energy E_{kin} of kinetic energy E_{kin} values

(or DM-halo velocity v)

WIMP scatterings as function of recoil energy E_R

• We now investigate the number of events above a specific threshold $E > E_R$

- here we display the integrated number of events **above** a specific recoil energy E_R
- equivalent to an **integrated recoil energy spectrum** above threshold
- here we use a flux-averaged value $\sigma_{SD}=3.6\,\cdot 10^{-45}\,cm^2$
- visualizes impact of nuclear mass M_N via kinematics & form factor F

WIMP scatterings: recoil energy spectrum

Conclusion from the integrated spectrum above a specific threshold $E > E_R$

it is of paramount importance to reach an energy threshold of $E_{thres} = 1 \dots 2 \ keV$ for

WIMP-detectors with target masses of **1** ... **10** *t*

What happens in my solid-state detector after a WIMP interaction?

- nuclear recoil can be detected via three solid-state responses

Solid state response part–*I*: scintillation

Emission and subsequent detection of scintillation photons

- effective energy for the detection of the scintillation light: $\Delta E \sim 100 \ eV$ per photon

Solid state response part–*I*: scintillation

Examples of DM-detectors based on scintillation: DAMA-Libra, SABRE,...

- NaJ / CsJ / CaF2 - crystals with readout by PMTs

Solid state response part-I: scintillation

Examples of DM-detectors based on scintillation: DAMA-Libra, SABRE,...

- NaJ / CsJ / CaF2 crystals with readout by PMTs
- each scintillation material has its specific properties, we aim for large light yield, fast decay time & optimum λ match to PMT

scintillator	light yield (photons <i>keV</i> ⁻¹)	decay time $ au_{f}\left(ns ight)$	mean wave- length λ_m (<i>nm</i>)	n
NaJ (Tl)	38	230	415	1.85
CsJ (Tl)	65	800	540	1.86
CaF ₂ (Eu)	19	940	424	1.44

Scintillation light in liquid noble gas detectors

Emission of scintillation light in the VUV (Vacuum Ultra-Violet) band

- we will later discuss large LXe / LAr – based TPCs, where VUV-scintillation occurs

discharge tubes: ionized noble gases (which is not a scintillation process!)

Solid state response part-II: phonons

Nuclear recoil results in the emission of a spherical phonon wave

- phonon: quasi-particle, corresponds to a 'quantized sound wave'
- detection of phonons requires detector operation at the mK scale

Solid state response part-II: phonons

Nuclear recoil results in the emission of a spherical phonon wave

- phonon: quasi-particles with very small energies on the meV scale
- detection of recoil energy E_R via thermistor $(\Delta T \rightarrow \Delta R)$

Solid state response part-III: electrons

Nuclear recoil results in the generation of electron-ion pairs (ionization)

- recoil nucleus has a very large stopping power $dE/dx \Rightarrow$ short recoil track
- high density of electrons & ions along the track: recombination

 we have to drift the electrons using strong electric drift fields to detector's anode for read-out

low-energy nuclear tracks vs. MIP*

Read-out of ionization signal via drift fields

Nuclear recoil results in the generation of electron-ion pairs (ionization)

- to generate an e^- & ion pair: 10 ... 20 eV
- separate e^- & ions via strong uniform \vec{E} field

nuclear tracks vs. MIP: use range to discriminate!!

20 um

Ionization energy of elements shows atomic structure

- we will use detectors:

Si: $\Delta E = 3.6 \ eV$ Ge: $\Delta E = 2.9 \ eV$ Ar: $\Delta E = 15.76 \ eV$

emitted e^-

radiation

High-Tech required for WIMP-detection

We will combine 2 out of the 3 detection methods to get best sensitivity!

- only by combining two methods we can achieve background discrimination

WIMP-detection via ionization & scintillation

Iarge-scale TPCs* with liquid noble gases: LXe & LAr

- ratio of scintillation light / electrons: excellent background discrimination

WIMP-detection via ionization & phonons

■ solid-state Ge- (Si-) detectors at the *mK* –scale with thermistor read-out

- ratio of electrons / phonons signal: excellent background discrimination

WIMP-detection via scintillation & phonons

- **Scintillating crystals (** $CaWO_4$ **) at the** mK **–scale with thermistor read-out**
 - ratio of photons / phonons signal: excellent background discrimination

Dicriminating nuclear recoils from electrons

Why do we need 2 parameters to discriminate signal from background?

- a comparison of nuclar recoils vs. electron tracks (from γ – background)

nuclear recoils: a closer look at their tracks

The value of dE/dx is key to the particle discrimination

- recoil nucleus with $E_R \sim keV$ – scale: extremely small range $R < 1 \, \mu m$

electron recoils: a closer look at their tracks

The value of dE/dx is key to the particle discrimination

- electron recoil with $E_R \sim keV$ – scale: rather large range $R \approx several \mu m$

Carlsruhe Institute of Technolog

Particle discrimination via quenching

Karlsruhe Institute of Technology

The quenching effect due to different dE/dx is key to successful PID*

- quenching observed for charge signal (scintillation light treated separately)

recoil energy E_R (keV)

- quenching of charge signal: typically factor 3 ... 4
- IMPORTANT: the phonon signal remains 'unquenched'

for all particle species $(p, {}^{A}Z, e^{-})$, \Rightarrow this allows to **determine recoil energy** E_R

Particle discrimination via quenching

The quenching effect due to different dE/dx is key to successful PID

- quenching observed for charge signal (scintillation light treated separately)

Particle discrimination via quenching

The quenching effect due to different dE/dx is key to successful PID

Exp. Particle Physics - ETP

Search for DM: a competitive field worldwide

Many different technologies & detectors have been & will be developed

- how can we best compare the sensitivities of different experiments?

Introducing the famous 'WIMP' plot

Comparing different experiments in a 2-parameter plot:

WIMP plot in case of a signal (claim)

• We are claiming an evidence for a DM-signal: error ellipses for $m(\chi^0)$, $\sigma_{scatter}$

WIMP plot in case of no signal

We see no signal above background and draw an exclusion curve (90%CL)

WIMP plot in case of no signal: light WIMPs

For very light WIMPs our sensitivity decreases: an effect of the threshold

WIMP plot in case of no signal: heavy WIMPs

For very heavy WIMPs our sensitivity decreases: an effect of the WIMP-flux

WIMP plot in case of no signal: all WIMP masses

For optimum sensitivity the masses of WIMP & target should be identical

WIMP plot in case of no signal: better sensitivity

For better sensitivity the DM detector should be larger & background smaller

WIMP plot in case of no signal: theory responds

The 'preferred' SUSY – parameter space is 'readjusted' from time to time

