

Astroparticle physics I – Dark Matter

WS22/23 Lecture 4 Nov. 9, 2022

www.kit.edu

Recap of Lecture 3

multi-messenger observations: all-sky maps in CRs, gammas, v's & GW

- Mollweide projection with GC in centre
- sources: SNR, GRB, AGN, pulsars, binary compact objects,...

studies of charged cosmic rays (CR)

- V. Hess (*balloon*), P. Auger (*shower*), J. Linsley (*arrays*, up to $10^{20} eV$)
- energy spectrum of charged CRs: characteristic **power law**
- direct CR detection via balloons & satellites (up to $\sim 10^{14} eV$): mass composition allows to determine galactic storage time of CRs
- indirect CR detection (from $\sim 10^{13} eV$) via air showers (**3 components**)

Air showers & jet physics at accelerators

majority (~98%) of shower particles as cascade e⁻e⁺ γ 80 GeV e-

- cascade processes: **pair production** \Leftrightarrow **bremsstrahlung**
- Heitler model for electromagnetic cascades:

- initial increase of # of particles (successive particle ´generations´)
- mean energy per particle decreases
- huge number of secondary, lowenergy particles: $e^-e^+ \gamma$
- shower 'dies out' once $E < E_C$ with: E_C = critical energy

majority (~98%) of shower particles as cascade $e^-e^+\gamma$

- two processes: pair production <> bremsstrahlung

development of electromagnetic showers in the atmosphere

- key parameter: radiation length X₀
- for highly **relativistic electrons**:

i.e. after passing an atmosphere thickness $X = X_0$ the **energy** *E* of the e^- has dropped from E_0 to a fraction of 1/e

- for high-energy photons:

i.e. the **mean free path** λ of high-energy photons for pair production in the atmosphere is $\lambda = 9/7 X_0$

electromagnetic showers: experimental signature & modelling

experimental shower signatures & Modelling via simulation-codes*

ICARUS experiment: neutrino-induced particle shower in a liquid argon calorimeter interactions of a primary high-energy electron

CORSIKA simulation: photon-induced air shower

*see Mod. Ex. Phys. III

- **a**tmosphere as electromagnetic calorimeter: $\sim 25 X_0$
- changing atmospheric 1
 weather: changes # of X₀

Electromagnetic showers in the atmosphere

atmospheric depth X [g/cm²]

Muonic component: mips

muons are minimum ionizing particles (m.i.p.s)

- "cosmic" munos (slang: "cosmics")
- from pion decays $\pi^{\pm} \rightarrow \mu^{\pm} + \stackrel{(-)}{\nu_{\mu}}$ in upper atmosphere
- flux density of muons at sea level: $d\Phi/dA \sim 100 \,\mu's \,m^{-2}s^{-1}$
- charge ratio: $\mu^+/\mu^- = 1.2$
- overall fraction of secondary particles $\varepsilon_{\mu} \sim 1.7\%$

application of air showers: muography

muography: muon rate depends on air pressure

Cosmic muons probe the interiors of tropical

PARTICLE AND NUCLEAR RESEARCH UPDATE

 advantage of using muons from showers: long range of µ in the atmosphere

cyclones

18 Oct 2022

Peering inside: the image on the right shows the interior of a cyclone. The redder areas are regions of lower pressure, and the greener areas are higher pressure. (Courtesy: Hiroyuki KM Tanaka)

Cosmic muons have been used to image structures deep within tropical storms, according to an international team of researchers. Led by <u>Hiroyuki</u> <u>Tanaka</u> at the University of Tokyo, the team used a network of muon detectors to identify differences in air density within several typhoons.

Muonic component: underground location!

muons are penetrating particles

- relativistic lifetime: $\tau = \gamma \cdot 2.2 \ \mu s$
- energy loss: dE/dx = 2 MeV/cm (H₂O)
- very penetrating shower component, despite massive shielding bunderground laboratory

Muons at the LHC and in astroparticle physics

Hadronic component of air showers

Hadronic interactions in the atmosphere

- all hadrons $(p, n, \pi^+, \pi^-, \pi^0, K^+, K^-, K^0, ...)$: processes of the **strong** interaction, decays: \rightarrow hadronic (& electromagnetic) shower
- charged hadrons ($p, \pi^+, \pi^-, K^+, K^-, ...$): also \rightarrow electromagnetic interaction (i.e. ionisation)
- hadrons are localized in **shower core** (~0.3% fraction)
- hadrons are characterized by their large dE/dx

Hadronic component of air showers

Hadronic interactions in the atmosphere

- hadronic interaction length Λ measured in [g/cm² or cm]
 - = mean length for inelastic scattering

$$\Lambda = \frac{1}{\sigma \cdot n}$$

σ: cross section with nucleusn: number of scatter centres

- atmospheric thickness corresponds
 - ~ 11 hadronic interaction lengths Λ

Hadronic component of air showers

Hadronic interactions: HCAL characteristics at LHC and in the atmosphere

μ

20

μ*

μ-

Features of an extended air shower

Earth's atmosphere acts as calorimeter for primary

Extended air showers – time development

Longitudinal air shower profile = shower particles as function of height z

Shower parameters: extracting primary energy E_0

in the shower

- Lateral distribution of air showers = the 'footprint' at the surface, which allows to determine energy E₀
 - extraction of E_0 via

 N_e = number of electrons N_μ = number of muons

via integration of lateral distribution $\rho(r)$

- analytical parameterisation of $\rho(r)$ via a so-call **Greisen**-fit*

Kenneth Greisen

(*details in ATP-2 ´cosmic rays´)

Combining lateral $\rho(r)$ with longitudinal profile

Method 1: longitudinal distributions – example nucleus Fe vs. proton p

- longitudinal profiles allow to discriminate heavy nuclei from light ones & protons

heavy nuclei (⁵⁶₂₆Fe):

- extended size of Coulomb fields (Z = 26)
 - nuclei already interact in topmost atmospheric layers

\Rightarrow smaller X_{max}

Method 1: longitudinal distributions – example nucleus Fe vs. proton p

- longitudinal profiles allow to discriminate heavy nuclei from light ones & protons

lightest nuclei (incl. p):

- smaller size of Coulomb fields (Z = 1, ...)
 - ⇒ light nuclei penetrate to deeper atmospheric layers

 \Rightarrow larger X_{max} & large fluctuations

Method 2: lateral distributions – heavy nuclei Fe vs. light ones (proton p)

- surface measurements allow to determine the ratio N_e/N_{μ} :

electron number N_e – muon number N_{μ}

electrons (e):

- in general much more e than μ
- *e* have a <u>short range</u> in atmosphere

 \Rightarrow reach surface only from larger X

muons (μ):

- in general much less μ than e
- μ have a <u>large range</u> in atmosphere

 \Rightarrow reach surface also from smaller X

- Method 2: lateral distributions heavy nuclei Fe vs. light ones (proton p)
- surface measurements allow to determine the ratio N_e/N_{μ} :

33 Nov. 9, 2022 G. Drexlin – ATP-1 #4

*Multi-Wire Proportional Chamber

Exp. Particle Physics - ETP

KASCADE experiment at KIT

KASCADE - KArlsruhe Shower Core and Array DEtector (1996-2009)

total area: $A \sim 200 \times 200 \ m^2$ coverage: $\varepsilon \sim 2 \ \%$ of total area

KASCADE experiment at KIT

KASCADE – three main components

Array:

16 × 16 detector stations detectors for muons / electrons trigger electronics for entire shower

central calorimeter (HCAL):

TMS* ionisation chambers ⇒ detection of hadronic shower core

muon tunnel:

sampling of muon distribution

KASCADE experiment at KIT

The detector array to measure electron & muon distributions separately

Muon number N_{μ} and electron number N_e :

- separate measurement via 2 scintillator layers with massive Pb - shielding in between

KASCADE – Grande experiment at KIT

Extending the detector array to measure up to higher CR energies

38 Nov. 9, 2022 G. Drexlin – ATP-1 #4

KASCADE – measuring mass A of primary nuclei

- measuring N_e and N_μ : using sum $N_e + N_\mu$ & ratio N_e/N_μ
- good correlation of N_e and N_μ \Rightarrow sum $N_e + N_\mu$ as indicator for primary energy E_0
- light nuclei (p, α, ¹²C): reactions start deep in atmosphere
 \\$ ratio N_e/N_µ large: small A
- heavy nuclei (⁵⁶Fe): reactions start deep in atmosphere
 ◊ ratio N_e/N_μ small: large A

10¹⁶

Q: KIT

CR energy spectra – the knee

- A distinct feature: change of spectral index & mass composition of CRs
 - at characteristic energy E_1 :
 - change of energy spectral index γ
 - change of mass composition: light $(p) \rightarrow$ heavy nuclei (⁵⁶Fe)
 - galactic CR acclerators = SN shocks \rightarrow SNR reach their maximum energy E_0
 - the 'ankle': change of accleration sites galactic \III extragalactic

CR energy spectra – the p, Fe knee

One observes several 'knees': from the p -knee up to the Fe -knee

- important: different nuclear charges

proton acceleration in SN-shock front

CR energy spectra – the p, Fe knee

• One observes several 'knees': from the p –knee up to the Fe –knee

