



### **Astroparticle physics I – Dark Matter**

### WS22/23 Lecture 5 Nov. 10, 2022



www.kit.edu

### **Recap of Lecture 4**



#### Extensive air showers: lateral & longitudinal distributions

- primary CR energy E<sub>0</sub>:

use integration over lateral distributions of  $N_e + N_\mu$  ('foot print') as good indicator for  $E_0$  (compare Greisen-fit to CORSIKA simulations)

- primary CR mass M:

use observed longitudinal distribution to determine shower maximum  $X_{max}$  - heavy CR (<sup>56</sup>*Fe*): small  $X_{max} \Rightarrow$  small ratio  $N_e/N_{\mu}$ 

- $= \text{fieldy Civ}(\Gamma e). \text{ small } X_{max} \rightarrow \text{ small ratio } N_e/N_{\mu}$
- light CR (*p*): large  $X_{max} \Rightarrow$  large ratio  $N_e/N_{\mu}$

#### Pioneering air shower experiment KASCADE at KIT Campus North

- components: large scintillator array, muon tunnel, central hadron calorimeter
- extension to KASCADE-Grande: at the knee change of mass composition

### **Power-Law Feature: element-specific 'knees'**





### Knee due to particle losses during propagation?



- GALPROP-MC-Code

transport of galactic CRs from the source to Earth (Diffusion): diffusion of particles in **'leaky box'** 

- detailled modelling of effects due to CR propagation:
  - a) orientation of galactic B-fields
  - b) energy losses (light particles):
    - inverse Compton effect
    - emission of synchrotron radiation



### Propagation of cosmic rays in our galaxy



- Charged CRs: guided by galactic magnetic fields with *B* ~ few μG
  - important parameter: Larmor radius R<sub>L</sub>

$$R_L \cong 1 pc \cdot \left(\frac{E}{10^{15} eV}\right) \cdot \left(\frac{\mu G}{Z \cdot B}\right)$$

- high energies:
  - $R_L > d = 0.3 \ kpc$
- ⇒ these CR nuclei will leave the galaxis



### Propagation of cosmic rays in our galaxy



- Charged CRs: guided by galactic magnetic fields with  $B \sim few \mu G$ 
  - important parameter: Larmor radius R<sub>L</sub>

$$R_L \cong 1 pc \cdot \left(\frac{E}{10^{15} eV}\right) \cdot \left(\frac{\mu G}{Z \cdot B}\right)$$

- low energies:
  - $R_L < d = 0.3 \ kpc$
- ⇒ these CR nuclei are trapped in galaxis on time scales  $\tau \sim 3 \dots 10 \cdot 10^6 y$



## CR spectrum feature: the ankle





### What is the degree of isotropy of cosmic rays?

#### Reconstructing the arrival direction of CRs from the shower axis

- galactic CRs:

many sources, energies  $\sim 10^{15} eV$ , galactic *B* —fields result in deflection  $\Rightarrow$  expect a high degree of isotropy

- extra-galactic CRs:

fewer sources at scales of UHECRs ⇒ nearby sources could be identified

- the **axis of a large air shower** allows to reconstruct the arrival direction of the primary particle





### Results for galactic cosmic rays at $E \sim 10^{15} eV$



#### The observed distribution of galactic CRs is indeed isotropic to first order

#### **KASCADE results (>10 years):**

- to first order ( $\sim 10^{-3}$ ) one sees an **isotropic arrival distribution**
- conclusions: there are
  - ♥ no nearby sources of CRs
  - ho neutral primaries (gammas) which initiate showers and which would point back to sources of CRs

#### KASCADE: arrival distribution of CR



## Looking very precisely: a vey small anisotropy!

new results of arrival distributions reveal a tiny anisotropy of galactic CRs

- anisotropic arrival distribution with small dipole amplitude  $A \sim 6 \cdot 10^{-4}$ 



## Anisotropy at ultra-high energies: southern view

**Pierre Auger Observatory\* reveals spatial anisotropy at energies** E > 8 EeV



### Anisotropy at ultra-high energies: northern view

**The Telescope Array reveals a localised 'hot spot' above**  $E = 5.7 \cdot 10^{19} eV$ 

### **Telescope Array (TA)** experiment in Utah (USA) observes UHECRs in nothern 30 hemisphere

data taking since 2008:
27 events from only
6% of the area being
surveyed: a hot spot of
UHECR



### **Cosmic accelerators: principles**



- galactic/extra-galactic accelerators: who powers them & how do they do it?
  - where does the energy for CRs come from?
  - what is the efficiency of cosmic accelerators?
  - can cosmic accelerators work over long time scales?

- how do cosmic acclerators work up to  $10^{15} \dots 10^{20} eV$ ?
- what limits the energy of galactic acclerators?
- why do extra-galactic accelerators go beyond?





### Local (galactic) energy densities: an overview



#### CR energy density: galactic sources must be able to provide this value

| local energy densities in the Milky Way      |                       |  |
|----------------------------------------------|-----------------------|--|
| electromagnetic radiation (star light)       | $\sim 0.6 \ eV/cm^3$  |  |
| galactic magnetic field ~ $B^2/2\mu_0$ (3µG) | $\sim 0.25 \ eV/cm^3$ |  |
| cosmic microwave background (CMB)            | $\sim 0.26 \ eV/cm^3$ |  |
| cosmic rays                                  | $\sim 1 \ eV/cm^3$    |  |
| local matter density (WIMPs)                 | $\sim 0.3 ~GeV/cm^3$  |  |











### comparison of $W_{SN} \& W_{CR}$ in galaxis



CR

**SNR** 

#### Do galactic supernovae provide enough power W to account for CRs?

- Total energy/year  $W_{CR}$  going into galactic cosmic rays

$$W_{CR} = \rho_{CR} \cdot \pi \cdot R^2 \cdot d \cdot \tau^{-1} = 2 \cdot 10^{41} J/year$$

- Total energy/year  $W_{SN}$  produced by supernovae in galaxis

 $W_{SN} \sim 3$  SN-explosions/century =  $5 \cdot 10^{42} J/year$ 

■ Supernovae = ideal candidate sites\* for galactic CR required efficiency for  $W_{CR} \rightarrow W_{SN}$  : < 5%



### Sources of Cosmic Rays in our galaxy



**Most likely Cosmic Ray sources in our galaxy at**  $E \sim 10^{15} eV$ 

#### Supernova shock fronts

- shock fronts in SNR: energy distribution? maximum energy  $E_0$ ? what nuclei  ${}^{A}Z$ ?



#### Pulsars, pulsar wind nebulae

 acceleration mechanism: hadronic / leptonic schemes?



## **Accleration mechanism for CRs**

### Fundamental physics principles to accelerate particles

#### - dynamical

scattering (reflection) of particles in magnetic clouds (Fermi-acceleration)

#### - hydrodynamic

accleration in plasma sheets

#### - electromagnetic

time-variable E, B — fields

ields 
$$\frac{d}{dt}(\gamma \cdot m \cdot \vec{v}) =$$
 with  
 $e \cdot (\vec{E} + \vec{v} \times \vec{B})$   $\vec{\nabla} \times \vec{E} = -$ 



 $\partial B$ 

∂t





# Fermi accleration in shock fronts of SN remnants Simplified 1Dscenario

### - SN-shock front:

spreads out into the very thin ISM\* over extended time scales of  $t = 10^4 \dots 10^5 y$ .





#### Fermi accleration in shock fronts of SN remnants Karlsruhe Institute of Technolog shock front forward Simplified 1Dshock front -u<sub>s</sub> ↓ scenario hot gas - SN-shockfront propagates with $u_s \cong 10^4 \ km/s$ or $\beta_{s} = 0.03$ plasma *cold* - $\beta_s$ decreases material gas over time ISM ISM\* rear-going shock front

## Fermi accleration in shock fronts of SN remnants

important: there is a density gradient at the transition to ISM

- ISM: density  $\rho_1$ , shock: density  $\rho_2$
- plasma physics: ratio  $\rho_2/\rho_1$  depends on the adiabatic coefficient  $\gamma_{ad}$



Exp. Particle Physics - ETP

#### **22** Nov. 10, 2022 G. Drexlin – ATP-1 #5

### Fermi accleration in shock fronts of SN remnants

- The process of Fermi acceleration of CRs comprises several key steps:
  - charged nucleus from ISM with primary energy  $E_0$ passes the SN-shock front: energy gain  $\Delta E$
  - B-fields within the gas of the shock front back-reflect the nucleus: **adiabatic process** without energy loss!
  - nucleus again passes passes pressure gradient (in opposite direction): again **energy gain**  $\Delta E$
  - further adiabatic backscattering of nucleus due to electro-magnetic fields in the ISM





#### Exp. Particle Physics - ETP

### Fermi accleration in shock fronts: an analogon

-U<sub>S</sub>

En

#### a mechanic analogon for illustration

- ping pong ball reflected by a wall which moves against ball with  $u_s$ 
  - distance between the wall and table tennis racket is reduced

n = 1

 ⇒ ball is accelerated, and (if this can be repeated) it will be ever faster





### Fermi accleration in shock fronts: a net gain

#### Summing up: the CR nucleus gains energy

- by Fermi acceleration, which is ...
- ... based on the multiple passing of a SN-shockfront
- ... a collission-less process, i.e. **no energy losses** due to inelastic scattering in the gas of the shock front

### **Energy gain** $\Delta E$

for a single acceleration cycle (& independent of the direction of the nucleus) one obtains a net energy gain

$$\frac{\Delta E}{E} = \frac{u_s}{c} = \beta_s$$





### Fermi accleration in shock fronts: many cycles

#### Summing up: single cycle vs. multiple cycles

- net energy gain  $\Delta E$  per single accleration cycle

$$\Delta E = \alpha \cdot E$$

- CR energy *E* after n accleration cycles (for starting energy  $E_0$ )  $E = E_0 \cdot (1 + \alpha)^n$ 

- number 
$$n$$
 of acceleration cycles to reach max. energy  $E$ :

$$n = \frac{\ln(E/E_0)}{\ln(1+\alpha)}$$





### Origin of the CR power law distribution



 taking into account an energydependent probability *P* for particle losses during the acceleration cycle, we obtain a power-law distribution

$$\frac{dN(E)}{dE} \sim E^{-2.7}$$
power law spectrum



### Maximum energy of CR due to SN shocks?





# Maximum energy of CR via famous Hillas formula

A.M. Hillas: cosmic acclerators use a B-field of size L to guide particles

В



- maximum energy  $E_{max}$  of a particle of charge Z in a SN shock front (see dimensions!)

$$\boldsymbol{E}_{max} \sim \boldsymbol{\beta}_{S} \cdot \boldsymbol{Z} \cdot \boldsymbol{B} \cdot \boldsymbol{L}$$

particle:

- nuclear charge Z

#### source:

- field strength B
- size L
- shock velocity  $\beta_s$

Hillas plot for UHECRs up to  $E_{max} = 10^{20} eV$ 





large L / small B





**29** Nov. 10, 2022 G. Drexlin – ATP-1 #5

\*s. ATP-2 summer term 2023

Exp. Particle Physics - ETP

### Sources of UHECRs up to $E_{max} = 10^{20} eV$





\*s. ATP-2 summer term 2023

Exp. Particle Physics - ETP

## Overview of results

- measurements of air showers arrays with KIT participation





### **Energy spectrum of UHECR & acclerators**

















38 Nov. 10, 2022 G. Drexlin – ATP-1 #5

Exp. Particle Physics - ETP



39 Nov. 10, 2022 G. Drexlin – ATP-1 #5 Exp. Particle Physics - ETP