

Astroparticle physics I – Dark Matter

WS22/23 Lecture 6 Nov. 17, 2022

www.kit.edu

Recap of Lecture 5

Properties of Cosmic Rays: from galactic up to the UHECR-scale

- spectral features: 'knee' a change of power law index for protons (E ~ 4 PeV) & iron nuclei (E~100 PeV)
- galactic accelerators (SNR, pulsar wind nebula): quasi-isotropic
- extra-galactic accelerators (AGN, radio galaxies ...): hot spots for UHECRs
- energy-density: efficiency for CR-acceleration of a few-% in case of SNRs
- Fermi acceleration: repeated run through of outer shock front with β_s \Rightarrow results in power law distribution $N(E) \sim E^{-\gamma}$ (index $\gamma \cong 2.7$)
- Hillas formula: maximum energy $E_0 \sim \beta_s \cdot Z \cdot B \cdot L$ $\beta_s: 0.03 \dots 1$
- galactic CR-propagation: Larmor radius R_L vs. galactic disk ('leaky box')

Proton astronomy: seeing wide and clear?!

Proton astronomy would be possible above $E \sim 10^{20} eV$

UHECR experiments: the Telescope Array (TA)

Investigating UHECRs at a site in the northern hemisphere (nh)

- site: Delta, Utah (US) – access to UHECR sources in *nh*

 $A = 700 \ km^2$ large array with 'hybrid technology'

500 scintillation detector stations, 3 m^2 area each, distance $d = 1.2 \ km$

3 **fluorescence telescope** stations, 12-14 mirrors & PMT systems each

UHECR experiments: Pierre Auger Observatory

Investigating UHECRs at a site in the southern hemisphere (sh)

- site: Pampa Amarilla, Malargüe (Argentina) – access to UHECR sources in *sh* $A = 3000 \ km^2$ large array with **'hybrid technology**'

- Shower observables
- longitudinal distribution (FD)
- lateral distribution (SD)
- FD data available only in clear moonless nights ($\varepsilon = 10\%$) to avoid scattered light (PMTs)

UHECR observable: longitudinal distribution (height profile of a CR shower)

- measuring the shower maximum X_{max} to derive the UHECR/mass composition

Pierre Auger Observatory: comparison to MC

UHECR observable: data compared to MC-simulations for a shower by ⁵⁶Fe

- comparing shower maximum X_{max} to the 'wrong' UHECR / nucleus

Pierre Auger Observatory: comparison to MC

UHECR observable: data compared to MC-simulations for a shower by a p

- comparing shower maximum X_{max} to the 'correct' UHECR (P) nucleus

Process of air fluorescence: all due to N_2

Air showers induce the isotropic emission of fluorescence light

- light in near-UV due to de-excitation of nitrogen N_2 (1P) & / N_2^+ (1N)

- N_2 fluorescence spectrum (blue)
- energy calibration of shower requires
 precise calibration of fluorescence yield

Process of air fluorescence: detection

fluorescence light is collected by large mirrors & focused onto PMTs

 large spherical mirrors (housed inside FD buildings, secured by daylight shutters) & PMT array for read-out

Process of air fluorescence: detection

fluorescence light is collected by large mirrors & focused onto PMTs

- PMT-camera image: 440 *PMTs* ($\emptyset = 38mm$) in a maxtrix of 20 × 22 pixels, each covering a view of $1.5^{\circ} \times 1.5^{\circ}$
- FD: side view of a shower track in pixel resolution

Process of Cherenkov light emission in air

Air showers induced the forward peaked emission of Cherenkov light

- $\Delta t = 2 3 ns$ short light signal due to fast-moving shower particles (polarisation effect of medium)
- after transmission in air of $d = 10 \ km$: $\lambda > 300 \ nm$
- narrow forward cone

 $\cos\Theta = 1/(n \cdot \beta)$

opening angle $\Theta \sim 1^{\circ}$ 0.066 $\gamma's m^{-2} GeV^{-1}$

Comparison of fluorescence & Cherenkov light

Air showers induce 2 light-emitting processes with different characteristics

N

N

primary / / particle

UV fluorecence Photons: isotropic emission

fluorescence telescope

electromagnetic shower with $e^-e^+\gamma$ generates secondaries which induce light emission in atmosphere

> Cherenkov photons: forward-peaked emission

atmospheric Cherenkov telescope (γ-astronomy, see lect. 8)

Karlsruhe Institute of Technology

second UHECR observable: lateral distribution (aka 'the footprint')

- determining primary particle energy E_0 via sum $N_e + N_{\mu}$

- lateral size of UHECR shower: r = few km

second UHECR observable: lateral distribution (aka 'the footprint')

- determining primary particle energy E_0 via sum $N_e + N_{\mu}$

Pierre Auger Observatory: Surface Detector

Water-Cherenkov detector stations: shower size

- register Cherenkov light of all charged particles
- Trigger: 5 H_2O 'tanks' in $\Delta T = 20 ms$ $\Rightarrow \epsilon = 98 \%$ at $E = 10^{19} eV$

Results: energy specta at the highest energies

- different energy energy estimators (calibrations) for **UHECR** energies

- common feature: at $E \sim 10^{20} eV$ one observes a sharp cut off of the rate $\Rightarrow E_{max}$ or effect due to **UHECR** propagation?

* Pierre Auger Observatory

** Telescope Array

Recap: cut-off of UHECR at specific energy

Exp. Particle Physics - ETP

Recap: cut-off of UHECR at specific energy

Propagation effect

$$\begin{array}{c} \operatorname{decay} \\ \Delta^+ \to p + \pi^0 \\ \to n + \pi^+ \end{array}$$

 $p+\gamma(2.7K)\to \Delta^+\to p+\pi^0$

$$\sigma_{tot}\sim 10^{-28} cm^2$$

- resonant scattering of UHECR protons off CMB photons (2.7 K background-radiation) generates a short-lived Δ^+ – resonance

- production & decay of Δ^+ – resonance is well understood (measured)

threshold energy for protons:
$$E_p = 4 \times 10^{19} eV$$

Kuzmin

- **GZK** effect severely limits the range of protons with energy $E > 10^{20} eV$
- photo-hadronic interactions of protons above the GZK cutoff will result in a very strong energy loss of p
- for heavy nuclei, an interaction with the 2.7 $K \gamma' s$ results in an energy loss due to spallation reactions
- only 'nearby' UHECR sources are visible in both PAO & TA

accelerated to much higher energies !

GZK: *if these are protons* – This is a strong hint for the GZK-cutoff !

What is the mass composition of CRs at the highest

energies?

Energy spectrum of UHECRs

Exp. Particle Physics - ETP

primary energy E(eI)

p

Cut off

10²⁰

Observed changes of the CR mass composition

- Measurements by Auger and other observatories
 - at first: $E = 10^{15} \dots 10^{17} eV$ (galactic CRs) nuclei get heavier

$$E_{max} \sim \beta_S \cdot Z \cdot B \cdot L$$

- then: $E = 10^{17} \dots few \times 10^{18} eV$ CRs get lighter: new sources
- finally: $E = few \times 10^{18} eV \dots 10^{20} eV$ CRs get heavier (extra-galactic)

4

Λ

Observed changes of the CR mass composition

Future measurements:

AugerPrime – more precise data

Fe

Ν

He

Н

1020

Energy spectrum of UHECR: new Auger results

- Latest experimental results of the energy ¹ spectrum up to 10²⁰eV
- cut-off of energies above $E = 10^{20} eV$:
- not due to GZK-effect
- accelerator reach the maximum energy E_{max}

Arrival direction of UHECRs: latest results

UHECRs with $E > 40 \, EeV$ (Auger) and $E > 53.2 \, EeV$ (Telescope Array)

- anisotropy of arrival directions of UHECRs well established
- hot spots along the socalled
 supergalactic plane (SGP)
- SGP = plane of local supercluster
- SGP almost perpendicular to galactic plane (GP)

----- SGP

Local universe: supergalactic plane

Distribution of galaxy clusters in the local universe

- local galaxy clusters Virgo, Norma, Coma, Pisces, Shapley,...
 are aligned along a thin
 supergalactic plane (SGP)
 (⊥ to galactic plane)
- UHECRs are expected to start in local universe (limited range)
 - ⇒ arrival directions of UHECRs from SGP

Neutrinos as messengers: unlimited range

Neutral messengers: gammas vs. neutrinos

Neutrino telescopes: setup & detection principle

Deep-sea eutrino observatories: KM3Net in the Mediterranean abyss

- detection of muons from CC reactions in a planned $1 \times 1 \times 1 \ km^3$ PMT array

Neutrino telescopes: setup & detection principle

■ UHE neutrino detection via charged current (CC) reaction: $\nu_{\mu} \rightarrow \mu^{-} \overline{\nu}_{\mu} \rightarrow \mu^{+}$

- v_{μ} reactions in matter produce high-energy muons (GeV TeV PeV) range
- decay kinematics: $E(\mu) \sim 0.5 \dots 0.7 E(\nu_{\mu})$
- muons with large range in ice / water

 $1 PeV : R_{\mu} = 1.7 km$ $10 PeV : R_{\mu} = 7 km$

- emission of Cherenkov-light with $\Theta_{c} \sim 43^{\circ}$ (water: n = 1.33) $\cos \Theta =$

$$\cos\Theta = 1/(n \cdot \beta)$$

Neutrino telescopes: setup & detection principle

UHE neutrino detection via charged current (CC) reaction: $\nu_{\mu} \rightarrow \mu^{-} \overline{\nu}_{\mu} \rightarrow \mu^{+}$

- v_{μ} reactions in matter produce high-energy muons (GeV TeV PeV) range
- decay kinematics: $E(\mu) \sim 0.5 \dots 0.7 E(\nu_{\mu})$
- muons with large range in ice / water

 $1 PeV : R_{\mu} = 1.7 km$ $10 PeV : R_{\mu} = 7 km$

water: n = 1.33 $\gamma_{thres} = 1.52$ $\beta_{thres} = 0.75$

Neutrino telescopes in ice & in the deep sea

 \odot

 $\overline{\mathbf{S}}$

 \odot

 \bigcirc

 $(\underline{\cdot})$

 (\mathbf{R})

 \odot

v-telescope in the antarctic ice

- good optical transparency
- scattering at dust particles
- PMTs with very low noise
- challenging infrastructure
- surface veto

deep-sea-v-telescope in Mediterranean

- optical transparency
- motion of PMT-strings (currents)
- PMTs with high background
- challenging infrastructure
- oceanographic studies

transparency at blue wavelengths 0.06 very important for

Cherenkov light

parameter	ice	water
optical transparency	dust	variable
bioluminescence	none	yes
PMT backgroundrate	low	kHz
angular resolution	$0.5 - 1^{\circ}$	< 0.3°

Neutrino telescopes in the deep sea

Boroe

Bathyctena

- optical scattering
- degree of ocean currents
- bioluminescence
- sedimentation
- K-40 background rate
- topology of deep sea floor
- infrastrucute on land

Deiopea

technological challenges during PMT installation

- deep-sea vessel for PMT- & cable deployment

Neutrino telescopes: deep-sea technology

- electro-optical cable ($L = 20 100 \ km$) distribution box, $P = 50 \ kW$ for 10000 PMTs signal bandwidth < 100 Gb/s
- hydrophones to monitor position
- deep-sea diving robot for PMTs

Ifremer

