

Astroparticle physics I – Dark Matter

WS22/23 Lecture 7 Nov. 23, 2022

www.kit.edu

Recap of Lecture 6

UHECRs: modern observations & results at the highest energies

- hybrid technology (air fluorescence & $N_e + N_\mu$): CR-observatories PAO & TA
- measurement of longitudinal distributions via isotropic emission of N_2
- UHECR-Cutoff at $E \sim 10^{20} eV$: max. energy E_0 (^AZ) vs. GZK-Cutoff (p)

UHE neutrinos: multi-messengers from afar

- v-telescopes in-ice / deep-sea: PMT-array to detect Cherenkov light
- CC-reactions of v_{μ} at PeV-energies: μ –tracks with range in km range
- optical properties of medium (deep-sea water vs. ice) for Cherenkov light

UHE Neutrinos – production mechanisms

expected v-sources at UHE scales: transient and/or variable accelerators

Exp. Particle Physics - ETP

UHE Neutrinos – production at target

neutrino production in the 'beam dump' of a proton accelerator

UHE Neutrinos – production at target

neutrino production in the 'beam dump' of a proton accelerator

- close analogy to terrestrial proton high-energy accelerators
 - $p + p \rightarrow p + p + \pi's$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow$$

$$e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

- flavour composition at source:

$$\boldsymbol{\nu}_{e}: \, \boldsymbol{\nu}_{\mu}: \boldsymbol{\nu}_{\tau} = \mathbf{1}: \mathbf{2}: \mathbf{0}$$

UHE Neutrinos – production at target

neutrino production in the 'beam dump' of a proton accelerator

- propagation effects of neutrinos: extremely long baseline *L*
- initially, v-oscillations $v_i \rightarrow v_j$ take place
- due to huge L: decoherence of neutrino wave packets, thus no further flavour oscillations
- flavour composition at earth:

 $v_e: v_\mu: v_\tau = 1:1:1$

Connecting ATP with TP: neutrino beams

Neutrino generation allows to investigate flavour oscillations

UHE neutrinos – detection reactions of v_e , v_{μ} , v_{τ}

UHE Neutrinos – measured flavour composition

neutrino production: test of our models of production & oscillation

- propagation effects of neutrinos: epected *flavour ratio of the source*
 - $\boldsymbol{\nu}_{\boldsymbol{e}}: \, \boldsymbol{\nu}_{\boldsymbol{\mu}}: \boldsymbol{\nu}_{\boldsymbol{\tau}} = \mathbf{1}: \mathbf{2}: \mathbf{0}$
 - $\boldsymbol{\nu}_{\boldsymbol{e}}: \, \boldsymbol{\nu}_{\boldsymbol{\mu}}: \boldsymbol{\nu}_{\boldsymbol{\tau}} = \boldsymbol{0}: \boldsymbol{1}: \boldsymbol{0}$
 - $\boldsymbol{\nu}_{\boldsymbol{e}}: \, \boldsymbol{\nu}_{\boldsymbol{\mu}}: \boldsymbol{\nu}_{\boldsymbol{\tau}} = \boldsymbol{1}: \boldsymbol{0}: \boldsymbol{0}$
- experimental data

 \Rightarrow compatible with decay chain \bullet $\pi \rightarrow \mu \rightarrow e$, but not with n - decay (A)

UHE neutrinos – signal of v_{astro} & background

Atmospheric neutrinos as a major background for astrophysical v-sources

Background sources for astrophysical neutrinos

- **a**tmospheric muons $\mu's$ & atmospheric $\nu's$
- atmospheric neutrinos:

generated by CR - p in upper atmosphere: neutrinos can travel through Earth \Rightarrow isotropic arrival directions

- muons from air showers

high-energy muons from the atmosphere have *km* −scale range in ice & can cross a deep in-ice/under-water v-telescope ⇔ only from ´upper´ hemisphere

⇒ only from 'upper' hemisphere $\cos \Theta > 0.1$ 12 Nov. 23, 2022 G. Drexlin – ATP-1 #7

Exp. Particle Physics - ETP

Background as function of Θ

Background sources for astrophysical neutrinos

Background sources for astrophysical neutrinos

 $\cos \Theta$:

neutrinos can travel through earth

Background as function of Θ

- atmospheric neutrinos:

-1 (from bottom) ... +1 (from top)

UHE neutrinos – muons from air showers

Instrumenting the ice surface & other bg-reduction techniques

- muons with the highest energies from an air shower have a range of several *km* in ice or water
- μ with large range in ice/water
 1 PeV: R_μ = 1.7 km
 10 PeV: R_μ = 7 km
- discrimination:
 polar angle O
 surface-detector-veto

UHE neutrinos – muons from air showers

Discrimination via polar angle

- timing of PMTs allows to reconstruct the muon track via the Cherenkov light cone

Background sources for astrophysical neutrinos

atmospheric neutrinos:
 generated by CR – p in upper atmosphere:
 neutrinos can travel through earth
 ⇒ isotropic arrival directions

energies: typical on GeV –scale
 dominant up to ~10¹⁴ eV (0.1 PeV)

Background as function of Θ

 Φ_{max} at $E_{\nu} = 0.25 \ GeV$ at higher energies: $\Phi_{\nu} \sim E^{-2.7}$

 $\Phi_{\nu} \sim 1 \ cm^{-2} s^{-1}$ at sea level

Background sources for astrophysical neutrinos

- Background as function of Θ
- atmospheric neutrinos: generated by CR – p in upper atmosphere: neutrinos can travel through earth
 ⇒ isotropic arrival directions
- energies: typical on GeV –scale
 dominant up to ~10¹⁴ eV (0.1 PeV)

 Φ_{max} at $E_{\nu} = 0.25 \ GeV$ at higher energies: $\Phi_{\nu} \sim E^{-2.7}$

 $\Phi_{\nu} \sim 1 \ cm^{-2} s^{-1}$ at sea level

UHE neutrinos from astrophysical sources

Discrimination via event energy & polar angle

- astrophysical neutrinos dominate event rate at energies $> 10^{14} eV$
- up-going neutrinos on the PeV-scale have to cross
 & propagate through the Earth. Is this possible?
- cross-section of UHE-v's in rock/iron-core?

UHE neutrinos – transmission through the Earth?

Deep-inelastic scattering processes of UHE-v's inside the Earth

- v-cross section increases linearly $\sigma_{\nu} \sim E_{\nu}$ $E_{\nu} = 100 \ TeV \Rightarrow \sigma_{\nu} = 10^{-7} mbarn$
 - ⇒ at $E_{\nu} \sim 100 \ TeV$ (0.1 PeV): Earth starts to be opaque for UHE-v's
- transmission probabilities $P(E_{\nu})$ for UHE ν 's after travel distance d:

$$P(E_{\nu}) = e^{-(d/\lambda_{\nu})}$$

mean free path λ_{ν} :

$$(1/\lambda_v) = \rho_{Earth} \cdot N_A \cdot \sigma_v(E_v)$$

Neutrino Telescopes – KM3NeT

- Detecting astrophysical & atmospheric v's at different sites in the Mediterranean Sea: a European project
 - European consortium for a $V \sim 5 \ km^3$ deep-sea v-observatory
 - ~ 200 M€ cost estimate
 - ongoing construction works since 2012(!)
 - three deep-sea sites:

Neutrino Telescopes – KM3NeT

Detecting astrophysical & atmospheric v's at different sites in the Mediterranean Sea: a European project

- KM3NeT is the successor to Antares, Nemo & Nestor
- R&D works on many new technologies: PMTs, deployment,...
- three deep-sea sites:

Neutrino Telescopes – ARCA & ORCA

- KM3NeT subsystems: ARCA (2 sites) & ORCA (1 site)
 - ARCA: Astroparticle Research with Cosmics in the Abyss hunting astrophysical neutrino sources with a large array

2 neutrino telescopes for TeV-PeV astrophs. v´s

Neutrino Telescopes – ARCA & ORCA

- KM3NeT subsystems: ARCA (2 sites) & ORCA (1 site)
 - ARCA: Astroparticle Research with Cosmics in the Abyss hunting astrophysical neutrino sources with a large array

KM3NeT – ARCA design

PMT - arrays based on Digital Optical Modules*

KM3NeT – ARCA design

ARCA is hunting for v-point sources with energies on the PeV-scale

- initial design: full scale size with 600 strings
- present design: 2 × 115 strings (each with 18 DOM units)
- strings placed in d = 90 m, each with length l = 650 m
- current status (9/2022): 21 strings (deployment since 2015)
- ongoing data-taking

KM3NeT – ARCA deployment

ARCA strings deployed in specific campaigns with sea-going vessel

30 Nov. 23, 2022 G. Drexlin – ATP-1 #7 Trailer: KM3NeT ORCA line deployment - YouTube

Exp. Particle Physics - ETP

KM3NeT – ORCA studying v-oscillations

KM3NeT subsystems: ARCA (2 sites) & ORCA (1 site)

- ORCA: Oscillation Research with Cosmics in the Abyss

goal: study of oscillation processes of atmospheric $\nu^{'}s$

- ORCA full scale:
 115 strings (*l* = 150 m, each with 18 DOMs)
- DOMs with much finer spacing (GeV scale)
- in a depth $d = 2.5 \ km$
- status (as of 9/2022):12 strings deployed

KM3NeT – ORCA studying v-oscillations

ORCA key target: investigate the mass hierarchy of neutrinos

- ORCA investigates low-energy atmospheric neutrinos on the GeV-scale
- atmospheric neutrinos oscillate*!
- v_{atm} propagate in the matter of the Earth: matter-induced effects ('MSW effect')

KM3NeT – ORCA studying v-oscillations

ORCA key target: investigate the mass hierarchy of neutrinos

- ORCA investigates low-energy atmospheric neutrinos on the GeV-scale
- atmospheric neutrinos
 oscillate*!
- *v_{atm}* may allow to determine the n-mass hierarchy: what is the correct ordering of mass eigenstates? normal or inverted hierarchy?

v-Telescope Lake Baikal

- deep-sea experiment in the deepest lake on Earth: Baikal
 - pioneering neutrino telescope "Lake Baikal" in the 80-s/90-s

Exp. Particle Physics - ETP

Baikal – Gigaton Volume Detector (GVD)

Extending an existing v-telescope in Lake Baikal

- largest v-telescope in northern hemisphere
- full-scale extension to 1 km³ planned
- present (2021) status GVD-I ready ($V \sim 0.5 \ km^3$)
- 8 clusters in operation

IceCube observatory at the South Pole

Design of an in-ice neutrino telescope

- 4800 photomultipliers distributed over volume $V = 1 \ km^3$ with 80 PMT strings
- PMT's in depth $d = 1.5 \dots$ 2.5 km in strings of 1 km
- PMT-strings fully deployed since March 2010
- muons detected from threshold energy $E_{thres} = 100 \ GeV$

IceCube Observatory: observations

Astrophysical neutrinos

- from galaxy PKS 1424-418: flare state in a **blazar**
- a very energetic event ('Big Bird') observed in 2017: $E(\nu_{\mu}) = 250 TeV$!

blazar PKS 1424-418

IceCube Observatory: observations

- Astrophysical neutrinos: an energetic n from an AGN-source in a flare state (enhanced emission of gamma rays)
 - AGN was in a very active phase: more v s!
 - muon direction points back to blazar

blazar PKS 1424-418

