

Astroparticle physics *I* – **Dark Matter**

Winter term 23/24 Lecture 14 Dec. 21, 2023

www.kit.edu

Recap of Lecture 13

Dark Matter: SUSY & how to build a successful CDM – candidate

- we can order *DM* candidates along their mass $m \& cross section \sigma_{tot}$
- WIMPs: SUSY connects fermions \Leftrightarrow bosons, important R parity $R_P = +1, -1$
- LSP of SUSY is stable over cosmological times, expect TeV scale mass
- *neutralino* = mass eigenstate & superposition of flavour states $\tilde{\gamma}^0 \ \tilde{Z}^0 \ \tilde{H}_u^0 \ \tilde{H}_d^0$
- Feyman diagrams for neutralinos: production annihilation scattering
- searches for SUSY & neutralinos at LHC with $\sqrt{s} = 13.6 TeV$

SUSY – signatures at the LHC experiments

- neutralinos escape the detector region at the end of a superpartner decay chain
 - production:

pp – collision results in a **pair** of *SUSY* – particles (due to **multiplicative** *R* – parity *R*_{*P*})

- decay cascade:

very **massive** *SUSY* – particles (such as *gluinos* produced in strong interactions) **decay** \Rightarrow emission of *SM* – particles also (e^+ , e^- , q, ...)

missing energy / momentum carried away:
 lightest SUSY – particle (LSP = neutralino) is stable

SUSY – signatures at the LHC experiments

Unstable *neutralinos* escape the vertex region but decay is accompanied by emission of SM – pairs

- signature: lepton pairs, hadrons,...

 $\widetilde{\chi}_2^0$

SUSY – searches at CMS and ATLAS: no signal

Recent limits on the masses of SUSY – particles: here \tilde{g} vs. neutralino χ_1^0

rpp2022-rev-susy-2-experiment.pdf (lbl.gov)

SUSY – searches at CMS and ATLAS: no signal

Recent limits on the masses of SUSY – particles

6 Dec. 21, 2023 G. Drexlin – ATP-1 #14 *somehow this mirror does not work!

Exp. Particle Physics - ETP

SUSY - searches at the HL - LHC (2029 ... 2038)

From the current Run 3 to the LS3 and then: enter the HL – LHC

- *LS*3: major upgrade of *LHC* (B = 11 T) towards luminosity $L = 5 \dots 7.5 \times 10^{34} cm^{-2} s^{-1}$
- LS3: major upgrade of experiments ATLAS and CMS to handle luminosity & data flow

SUSY – searches in the (far?) future

Karlsruhe Institute of Technology

On the drawing board of CERN: the Future Circular Collider FCC

- planned future pp collider with $2\pi r = 100 \ km$ for $cms \ \sqrt{s} = 100 \ TeV$
- FCC pp:
 pp collisions for
 SUSY & WIMP –
 searches
- FCC ee: e^+e^- - collisions to study $h W^{\pm} Z^0$ at $\sqrt{s} = 90 - 350 \, GeV$

SUSY – searches in the (far?) future

On the drawing board of CERN: the Future Circular Collider FCC

- planned future pp - collider with $2\pi r = 100 \ km$ for $cms \sqrt{s} = 100 \ TeV$

4.3 Indirect WIMP detection methods

Searching for annihilation processes of WIMPs in the galactic DM – halo

Annihilation processes of galactic neutralinos

A variety of messenger particles from inner DM – halo: $\gamma's$, e^+ , \overline{p} , ...

20

Particle physics (DarkSUSY: annihilation of χ^0) meets astrophysics (DM halo model & GALPROP)

 search for WIMP annihilations in the DM – halo of our galaxy is <u>strongly</u> model-dependent

, 2

xi

Particle physics (*DarkSUSY*: annihilation of χ^0) meets astrophysics (*DM* halo model & *GALPROP*)

- particle theory:

selection of a *SUSY* – model with specific neutralino properties: mass, flavour ratios, annihilation modes,

⇒ energy spectrum of resulting messenger particles

Particle physics (*DarkSUSY*: annihilation of χ^0) meets astrophysics (*DM* halo model & *GALPROP*)

- astrophysics theory:

selection of a DM – halo model with specific density profile (especially in central part), WIMP velocities \Rightarrow also important: modelling of background spectrum*

Modelling of background processes

Particle physics (*DarkSUSY*: annihilation of χ^0) meets astrophysics (*DM* halo model & *GALPROP*)

 background modelling: here - inverse Compton effect
 ⇒ selection of a source: pulsar (normal or ms –), SNR, micro-quasar, diffuse background, galactic center
 ⇒ important: modelling based on realistic scenario (B, ρ)

Modelling of messenger propagation

Particle physics (*DarkSUSY*: annihilation of χ^0) meets astrophysics (*DM* halo model & *GALPROP*)

propagation modelling: here – positrons e⁺
selection of a model for the galactic B – field with 3D,
often used: 'leaky box' galactic B – field model for CRs
⇒ important: modelling* of energy losses & guiding

Combining parameters from particle physics & astrophysics

- **number** N_{Ann} of annihilations of a *WIMP* with mass m_{CDM} in our galactic DM – halo per **unit time** t / **volume** V

$$N_{Ann} \sim \langle \sigma_{Ann} \cdot v \rangle \cdot n_{CDM}^2$$

$$\sim \langle \sigma_{Ann} \cdot v \rangle \cdot \frac{\rho_{CDM}^2}{m_{CDM}^2}$$

$$\sim \langle \sigma_{Ann} \cdot v \rangle \cdot \frac{\rho_{CDM}^2}{m_{CDM}^2}$$

$$\rho_{CDM} = n_{CDM} \cdot \frac{m_{CDM}}{V}$$

$$\sigma_{Ann} \quad xsec \text{ from theory estimates}$$

$$m_{CDM} \quad neutralino \text{ mass } (GeV \dots TeV)$$

$$v \quad WIMP \text{ velocity profile}$$

$$PARTICLE PHYSICS$$

$$ASTRO PHYSICS$$

Annihilation processes: a closer look at theory

Relevant Feynman diagrams at the tree level

- we need to consider all Feynman graphs, not only tree level....

- t channel (transformation):sfermions (\tilde{f})
- s channel (annihilation): Z^0 – boson pseudo–scalar A

- further annihilation channels into pairs of gauge bosons $W^{\pm} Z^{0}$ in both t – and s – channel

PARTICLE PHYSICS

Annihilation processes: a closer look at theory

- we need to consider all Feynman graphs, not only tree level....

Modelling of DM **halos: finding the correct density profile** $\rho(r)$

- DM density values very important for annihilation studies

$$N_{Ann} \sim \rho_{CDM}^2$$

galactic center: DM – profile ρ_{CDM} peaks ('DM – spike')

- ρ_{CDM} density profile of DM halo
- *v WIMP* velocity profile

ASTRO PHYSICS

expected **DM** – annihilations in Mollweide projection

Modelling of DM halos: a 'de facto' standard is the NFW profile

- Navarro-Frenk-White (NFW) propose a detailed profile, simplified here to

 $\rho_{CDM}(r) \sim 1/r^2$

expected *DM* – annihilations in Mollweide projection

Annihilation processes: a closer look at dark halos

Modelling of DM halos: comparison of different published halo profiles

Gammas as messenger particles: integration of signal along line ds

- Cherenkov telescopes, pointed at the galactic center, observe an integrated signal

Annihilations from DM: where to look

Gammas as messengers: we focus our telescope onto the galactic center!

- it is best to look at the center of our galaxy: much larger DMA* - signal

Annihilations from DM: where to look

Gammas as messengers: we focus our telescope onto the galactic center!

Annihilations from DM: where to look

Simulated DMA signals: the galactic center 'overwhelms' all other sources

Positrons as DMA messengers from the galaxy

Advantages / disadvantages of experiments using positrons

*Galactic Center

Gammas as DMA messengers from the galaxy Advantages of gamma experiments GeV: *Fermi* observatory **GC** - γ 's point back to their origin (the GC): no deflection in galactic B – fields - $\gamma' s$ suffer no energy losses from the GC *GeV* ... *TeV*: - γ 's can be detected by satellites or by Imaging Atmospheric *IACTs* Cherenkov Telescope

Gammas as DMA messengers from the galaxy

We have very detailed maps of the GeV – gamma sky

GeV: *Fermi* observatory

Geminga Vela Crab 3C454 3 - many astrophysical gamma sources*: *SNRs*, **pulsars**, *ISM*,... - column density of the entire galaxy

 $\rho d = 38 \, g/cm^2$

Gammas as DMA messengers: expected energies

- Expected distributions strongly depend on annihilation channels
- we expect about 30 ... 40 γ 's from quark fragmentation processes (*GeV* - scale)
- maximum γ energy extends up to *WIMP* mass (here: $m = 80 \ GeV$)
- γ energy distribution depends on the (unknown) **dominant** annihilation channel ($\rightarrow b\overline{b}$, ...)

Gammas as DMA messengers: 'golden' signal

Hopes of identifying a *smoking gun* of *DMA* via a golden γ – line at $m(\chi_1^0)$

Gammas as DMA messengers: golden signal

no *smoking gun* of DMA via γ – line at $m(\chi_1^0)$ observed in data of FERMI

Gammas as DMA messengers: FERMI

Fermi Gamma-Ray Telescope: most sensitive GeV – gamma observatory

- goal: long-term study of gamma-ray sky large area, high angular resolution
- key instrument: Large Area Telescope (LAT)
 ⇒ detect gammas via pair conversion

Fermi satellite mission	
Data taking	since mid-2008
orbit	560 km
dimensions	$2.8 m (h) \times 2.5 m (\emptyset)$
mass	4.3 <i>t</i>
γ-energies	20 MeV 300 GeV
effective area	$1 m^2$
angular resolution	~ 1′

LAT

How do you look for a DMA signal in the sky?

- define a series of ROIs (Regions-Of-Interest): R3 3° / R16 16° / R41 41°
- we expect & search for a DMA signal in the innermost region R3 3°

Fermi observes an excess at the galactic center

2014/15: is this a signal of DMA (aka the 'Hooperon*') or 'just pulsars'

- from innermost galactic region $r < 1.5 \ kpc$
- but: rather low γ energies $E_{\gamma} = 1 \dots 3 \ GeV$
- (boldly!) interpreted as *WIMP* **signature**

fitted mass: $m(\chi_1^0) = 31 - 40 \ GeV$ DMA channel: $\chi_1^0 + \chi_1^0 \rightarrow b\overline{b}$

- since then: **highly** controversial discussions about this interpretation of the γ excess
- (likely) astrophysics explanation: *ms* pulsars

Mysterious galactic signal points LHC to dark matter High-energy particles at centre of Milky Way now within scope of Large Hadron Collider.

Davide Castelvecchi

05 May 2015 | Corrected: 06 May 2015

Rights & Permissions

nature.com

A. Mellinger, CMU; T. Linden, Univ. of Chicago/NASA Goddard

γ-rays (shown in false colour) emitted from the Galactic Centre are giving the LHC a firm target in its hunt for dark matter.

It is one of the most disputed observations in physics. But an explanation may be in sight for a mysterious excess of high-energy photons at the centre of the Milky Way. The latest analysis¹ suggests that the signal could come from a dark-matter particle that has just the right mass to show up at the world's largest particle accelerator.

The Large Hadron Collider (LHC), housed at the CERN particle-physics laboratory near Geneva, Switzerland, is due to restart colliding protons this summer after a two-year hiatus (see 'LHC 2.0: A

Fermi observes an excess at the galactic center

- 2014/15: is this a signal of DMA (aka the 'Hooperon') or 'just pulsars'
 - DMA interpretation: annihilation of 'Hooperons' into GeV scale gammas
 - astrophysics interpretation: a new class of ms pulsars at the galactic center

Fermi observes an excess at the galactic center

- 2023: this is not a signal of DMA (aka the 'Hooperon') but 'new pulsars'
 - update: no evidence for a *Hooperon* in *DMA* search focused on dwarf galaxies
 - astrophysics interpretation: a new class of ms pulsars at the galactic center \mathbf{V}

Let's search for a *DMA* signal in the *TeV* γ – sky

Using Imaging Atmospheric Cherenkov Telecopes to hunt a DMA signal

- if *neutralinos* are very massive: we expect a *DMA* – signal in the *TeV* – range

Comparing the DMA sensitivites

A clear advantage of *IACTs*: we extend *DMA* searches to higher γ – energies

G. Drexlin – ATP-1 #14 Dec. 21, 2023

Karlsruhe Institute of Technolog

Using Imaging Atmospheric Cherenkov Telecopes to hunt a DMA signal

- the galactic center is a very active place with a central supermassive black hole ⇒ many astrophysical sources! Event Horizon Telescope (EHT)

Using Imaging Atmospheric Cherenkov Telecopes to hunt a DMA signal

the galactic center is a very active place with a central supermassive black hole
 ⇒ many astrophysical sources!

will we be able to see a *DMA* signal there?

IT

the GC: a supermassive black hole & many SN remnants – all close together

Sgr D HI Sgr D SNR

SNR 0.9+0.1

- the GC: zoom in please we want to focus on the very heart of our galaxy
- we compare different **R**egions—**O**f—**I**nterest (**ROI**), similar to the **Fermi** analysis at lower energies

IACT results from the galactic center

the GC: a featureless power-law spectrum, a clear indication of astrophysics

inner-most *ROI*: gammas from acceleration of charged particles & subsequent *γ* – production

IACT results in the future: expected CTA limits

- CTA will look for DMA at the
 - galactic center
 - galactic halo

IACT results in the future: expected CTA limits

The future Cherenkov Telescope Array will search for DMA signals

Seasons Greetings & a happy New Year 2024

GREETINGS & **A HAPPY NEW YEAR 2024**

from overlapping tracks of cosmics & α – decay chain events recorded with standard iphone6 sensors

49

