

Astroparticle physics *I* – **Dark Matter**

Winter term 23/24 Lecture 15 Jan. 11, 2024

www.kit.edu

A Happy & successful New Year 2024

Dark Matter welcomes you at the site *kit.edu*

The Invisible Part of the Universe

KIT Researchers Are Working on the Detection of Dark Matter →

The Biggest Mysteries of the Universe

To the Highlight Topic 🔶

Our Universe

Research Magazine lookKIT 2023/4 ->

Searching for **Ghost Particles** The recruise EXPERIMENT LIDOKS FOR NEUTRINGS OF THE MOUNTS FOR NEUTRINGS OF THE MOUNTS FOR NEUTRINGS OF THE SOUTH POLE

KIT

Recap of Lecture 14

- **Dark Matter Searches:** *LHC* searches & $\tilde{\chi}^0$ annihilation in $\gamma's$ in the halo
 - *LHC* searches for SUSY decay cascades from *gluinos* to *neutralinos*: lepton/hadron pairs, **missing** E_T , p_T
 - no signal in pp collisions, Run2: limit $M(\tilde{\chi}^0) \ge 1 TeV$, Run3 since mid-2022, HL - LHC: 2029 ... 38, then: FCC (?)
 - DM annihilation in the halo: particle (decay channels) & astro physics (*NFW* profile) to calculate messenger spectrum: $\gamma, \nu, e^+, \overline{p}, \dots$ Collision of the $\circ\circ\circ$
 - results of *DMA* searches based on gammas
 GeV scale: *FERMI* excess *Hooperon* or *ms* pulsars?
 TeV scale: *IACTs* to the *GC* many astrophysical sources

Positrons as *DMA* **messengers**

Positron signal is challenging due to e^+ transport characteristics in galaxy

key to high *DM* – sensitivity: careful study of all transport phenomena of *e*⁺ in galactic *B* – fields (but: local source at distance *d* = *kpc*) !

GeV ... *TeV* – scale: *AMS* – 02 experiment

e+

strong deflection in galactic B - field

 $\Rightarrow huge energy losses during propagation:$ $e^+ only from local <math>DM$ – halo

Positrons as *DMA* **messengers**

- **A** Closer look at transport phenomena of e^+ from *DMA* in the galactic halo
- key systematics:
 - diffusion, convection
 - energy losses ΔE : absolute values & as function of $E(e^+)$
 - alignment of **B** fields
 - also: radiation fields
 - 'normal' CR sources

e+

alignment of B – fields in a typical spiral galaxy

GeV ... TeV – scale:

AMS – 02 experiment

 $B = 7 \dots 10 \ \mu G$

Positrons as *DMA* **messengers**

A closer look at a possible e^+ signal from *DMA* (for different masses of χ^0)

Background to DMA searches: astrophysical e^+

- Early measurements of astrophysical e⁺ from diffuse sources
 - origin of astrophysical positrons has previously been studied in detail:

interactions of **cosmic radiation** with the Inter-Stellar Medium (ISM): dust, gas (hot, intermediate, cold)

Background to DMA searches: astrophysical e^+

- **Very limited range of** e^+ from astrophysical sources or *DMA*
- energy losses during long-distance (kpc) propagation of astrophysical e^+ :

(kpc)

major losses via: synchrotron radiation +:
& inverse Compton effect (off star light
& Cosmic Microwave Background CMB) +:

Searching for *DMA* with e^+ : *AMS* – 02

Alpha Magnetic Spectrometer (AMS): a particle detector onboard the ISS

- search for *DM* annihilation (e^+ , \overline{p} , ...)
- search for antimatter $(\overline{He}$, ...)
- investigations of cosmic radiation: flux, energies, composition

start: May 16, 2011 with *STS* – 134

Searching for *DMA* with e^+ : *AMS* – 02

- Alpha Magnetic Spectrometer (AMS): a particle detector onboard the ISS
- ETP was participating in AMS 02 from 2002 ... 2020 (contributions to the TRD)

G. Drexlin – ATP-1 #15

<u>AMS-02 | The Alpha Magnetic Spectrometer Experiment</u> (ams02.space)

Exp. Particle Physics - ETP

Searching for DMA with e^+ : AMS – 02 setup

AMS - 02 results: a high–energy excess of e^+

- the fraction of cosmic e^+ does indeed increase for high energies, but we do not (yet??) see a cut-off at neutralino mass $m(\chi^0)$
- is this the '**smoking gun**' of *DMA* & evidence for *DM*?
- we need to check for other astrophysics scenarios first...

AMS - 02 goals: observe high-energy e^+

■ AMS – 02 observes energetic positrons almost up to the TeV – energy scale!

AMS - 02 results: a high–energy excess of e^+

14

AMS - 02 results: a high–energy excess of e^+

What is its origin – DMA signal or astrophysical e⁺ from nearby pulsars?

AMS – 02 experiment: the future

The search for DMA with messenger particles e^+ , \overline{p} will continue ...

4.4.2 Neutrinos

Searching for DMA in the center of the galaxy* & the sun with neutrinos

17 Jan. 11, 2024 G. Drexlin – ATP-1 #15 *See Ch. 2. 1. 2 – *IceCube* results (Lect. #7, #8) Exp. Particle Physics - ETP

Neutrinos as *DMA* messengers from the solar core

Interesting scenario: WIMPs get trapped by the Sun

- WIMPs can scatter off solar matter & thereby lose energy ⇒ they get captured & sink to the core
- there will be an **equilibrium** of the **DM capture rate** R_C & the **DM annihilation rate** $R_{DMA} \Rightarrow$ do we see **DMA**? & how can we discriminate against **solar neutrinos**?

DMA in the core of the sun?

MeV

- Standard scenario: MeV neutrinos from the solar core
 - pp fusion reactions in the core of the sun*

DMA in the core of the sun?

GeV

- *SUSY* scenario: *GeV* neutrinos from the solar core
- spin-dependent interaction* of DM halo WIMPs with solar matter via exchange of a Z^0 boson
- *NC* scattering off *H* atoms results in an energy loss
 of *WIMP* neutralinos: subsequent capture in the sun

- calculation of capture rate R_C depends on WIMP parameters:

20 Jan. 11, 2024 G. Drexlin – ATP-1 #15 *because Z^0 – vector boson has a spin S = 1 Exp. Particle Physics - ETP

Hunting GeV – scale neutrinos from DMA

GeV – v's from the sun

DMA must not change the energy balance of the sun from pp - or **CNO** - chains

ICECUBE

DeepCore: extension of **IceCube** for ν – studies at **GeV** – scale

Hunting GeV – scale neutrinos from DMA

GeV – v's from the sun with 6 **DeepCore** strings embedded in *IceCube*

- 6 new PMT strings, each with 40 PMTs
 - ⇒ improved sensitivity
 to detect *v*´s from *DMA* in the solar core
- DMA search with v_{μ} : $E(v_{\mu}) = 10 \ GeV \dots 1 \ TeV$

Finally: could there be WIMP burning stars?

Why not settle for a new energy source: burn WIMPs instead of hydrogen !

- an additional stellar energy source: WIMP annihilation
- stars located very close (r < 1 lyr) to **SMBH*** (**Sgr** A*) are embedded in a 'spike' of

the galactic DM – halo core

CIT

Signature of WIMP burning stars

- Why not settle for a new energy source: burn WIMPs instead of hydrogen!
- local DM density ρ_{DM} ($r < 1 \ lyr$) > 10⁹ g/cm^3
- stars will capture a huge number of *WIMPs* which will annihilate in the stellar cores

signature of 'WIMP burners':
 modified stellar parameters
 ⇒ completely convective stars

Search for WIMP burning stars – the JWST

Why not settle for a new energy source: burn WIMPs

- dark stars in very early universe
- early stars will capture a huge number of *WIMPs*:
 - \Rightarrow filled with hydrogen & 1/1000 dark matter

- signature could be revealed* by the **JWST**

*2023: first 2 ... 3 candidates found !

4.5 Direct detection methods for WIMPs

- We want to directly detect WIMPs from the galactic DM halo: but how?
- WIMP interactions with the material of of our detector: elastic scattering processes off a nucleus!

How to directly detect a WIMP - the basics

■ Number of our *DM* - events: we need astro- & particle - physics

- direct detection is also model-dependent

 ρ_{CDM} DM - density in solar systemvWIMP - velocity profile in halo

 $\sigma_{scatter}$ xsec. from theory calculations

m_{CDM} neutralino mass (*GeV* ... *TeV*)

collision kinematics

How to directly detect a WIMP - the basics

To estimate the number of our *DM* – events we consider detector physics

- what is the answer of our **solid**—**state detector** to an elastic nuclear recoil?

 E_R detection of recoil enery of the target nucleus in the **solid state**

⇒ good knowledge of **detector properties**

collision kinematics

neutralinos

How to directly detect a WIMP - the basics

To estimate the number R of our DM – events we bring all factors together

Estimating the *WIMP* flux

To estimate the number R **of our** DM – events we consider the WIMP flux

$$R = N_{target} \cdot \langle \Phi \rangle \cdot \langle \sigma_{SI/SD} \rangle$$
$$m_{CDM} = 100 \ GeV$$
$$\rho_{CDM} = 0.3 \ GeV cm^{-3}$$

neutralinos

 $\langle \boldsymbol{\Phi} \rangle = (\rho_{CDM}/m_{CDM}) \cdot \langle \boldsymbol{v} \rangle$

 $\approx 80\ 000\ cm^{-2}\ s^{-1}$

How do YOU best remember (visualize) our local DM density?

31

Jan. 11, 2024

Properties of the WIMP flux: motion of the Sun

We expect that a WIMP 'wind' blows with a preferred direction

motion of the Sun around the Galactic
 Center (GC) induces a preferred WIMP
 direction: the WIMP wind

Properties of the WIMP flux: Cygnus region

- We expect that a WIMP 'wind' blows with a preferred direction
 - motion of the Sun around the Galactic
 Center (GC) induces a preferred WIMP
 direction: the WIMP wind blows from Cygnus

Properties of the WIMP flux: Cygnus region

We expect that a WIMP 'wind' blows with a preferred direction

motion of the Sun around the Galactic
 Center (GC) induces a preferred WIMP
 direction: the WIMP wind

Properties of the galactic WIMP halo

The galactic DM – halo: what is its shape & its WIMP velocity profile?

- no large-scale rotation of entire DM halo around the center of the galaxy
- each WIMP follows individual Kepler orbit around the galactic center
- from this a specific *WIMP* velocity profile f(v) follows, which can be calculated for varius **halo radii** r
- shape: we expect a tri-axial ellipsoid
- *DM* halo properties can be traced by stellar velocity profile*

galactic WIMP halo: velocity profile

• We are interested in the *WIMP* velocity profile at our distance r = 8 kpc

- Standard Halo Model (SHM) compared to other theoretical calculations

Properties of the galactic WIMP halo

■ *WIMP* velocity profile at distance r = 8 kpc: cut–off parameter for f(v)

- for speeds of $v \ge 500 \dots 600 \ km/s$: WIMPs will escape galactic DM -halo

Properties of the galactic WIMP halo: implications

There are fundamental implications of f(v) for direct *DM* searches

- WIMPs in galactic DM halo move non-relativistically with $\beta \approx 10^{-3}$

There are fundamental implications of f(v) for direct *DM* searches

- a nucleus will receive a low-energy recoil of a few tens of keV (at most)

Direct detection of *WIMPs***: modulation of flux**

Earth's rotation around Sun causes a (smaller) variation of the WIMP flux

- velocity vectors of the **Sun** \vec{v}_S & the **Earth** \vec{v}_E add:
 - \Rightarrow seasonal variation of the *WIMP* velocity distribution f(v)
- this results (in the local coordinate system of our *DM* detector) in a well–defined time dependence:

 $v(t) = v_{S} + v_{E} \cdot \cos(60^{\circ}) \cdot \cos \omega (t - t_{0})$

Direct detection of *WIMPs*: variation of E_R

Earth's rotation around Sun causes a variation of the spectrum of E_R

Direct detection of WIMPs: interactions

- Neutralinos can interact via two exchange interactions: scalar / vector
- scalar interaction via light, heavy Higgs H, h

σ_{SI}: Spin Independent

- *Higgs* couples to the **mass** distribution of the target nucleus
- coupling inside a nucleon:
 not only to valence quarks but also to
 sea quarks & to massless gluons (via loops)

neutralinos

Direct detection of WIMPs: interactions

Neutralinos: scalar, spin-independent interaction cross section $d\sigma_{SI}/dq^2$

Direct detection of WIMPs: heavy nucleus

Neutralinos: scalar, spin-independent interaction cross section $d\sigma_{SI}/dq^2$

$$\frac{d\sigma_{SI}}{dq^2} \sim A^2 \cdot F(q^2)$$

a large *nucleus* with A > 100 is very helpful

for $f_p = f_n$

scattering amplitudes off all *nucleons* add *coherently*

Xenon is best: $A \approx 130$

Neutralino interactions: the important nuclear form factor $F(q^2)$

 $\frac{d\sigma_{SI}}{dq^2} \sim A^2$

Direct detection of *WIMPs*: the form factor $F(q^2)$

Neutralino interactions: the importance of its de Broglie wavelength

Neutralino interactions: the important condition for coherent scattering

$$\frac{d\sigma_{SI}}{dq^2} \sim A^2 \cdot F(q^2)$$

- scattering amplitudes only add *coherently*, in case the **following condition** is fulfilled:

 $q \cdot R_i \ll 1$ (typcially only for A < 50)

momentum transfer $q \sim A \cdot 10^{-3} \ GeV$ nuclear radius $R_i \sim A^{\frac{1}{3}} \cdot 7 \ GeV^{-1}$

