

Astroparticle physics *I* – **Dark Matter**

Winter term 23/24 Lecture 16 Jan. 17, 2024

www.kit.edu

Recap of Lecture 15

Indirect and direct searches for CDM – neutralinos

- **positrons**: clear excess ($E = 10 \dots 1000 \text{ GeV}$) compared to 'classical' models origin: *a*) *CDM* annihilation in local *DM* – halo *b*) emission of **nearby pulsars**
- *WIMP* burning stars: a few close to galactic center?
- direct searches for *CDM*: **elastic nuclear recoils** with typical recoil energy $E_R \approx few \, keV WIMP$ wind from **Cygnus**, small yearly modification of v(t)
- WIMP interactions: σ_{SI} : via scalar Higgs (mass) $h, H \Leftrightarrow \sigma_{SD}$: via spin-1 Z^0
- cross section: $d\sigma_{SI}/dq^2 \sim A^2 \cdot F(q^2) \Rightarrow$ large nucleus, low-momentum transfer coherent interaction \Rightarrow long *de*-*Broglie* wavelength

Direct detection of *WIMPs*: form factor $F(q^2)$

Neutralino interactions: the important condition for coherent scattering

- scattering amplitudes only add *coherently*, in case the **following condition** is fulfilled:

 $q \cdot R_i \ll 1$ (typcially only for A < 50)

momentum transfer $q \sim A \cdot 10^{-3} \ GeV$ nuclearradius $R_i \sim A^{\frac{1}{3}} \cdot 7 \ GeV^{-1}$

low-velocity WIMPs

WIMP scattering: impact of form factor $F(q^2)$

high recoil energies E_R: implications of the loss of coherence

- we aim for heavy nuclei with large A & large nuclear radius R_i (\Rightarrow Xenon)

- challenge:

the loss of coherence already starts at rather small values of the momentum transfer q^2 (or nuclear recoil energy E_R)

$$\frac{d\sigma_{SI}}{dq^2} \sim A^2 \cdot F(q^2)$$

extremely low energy threshold required

 10^{0}

WIMP scattering off nuclei: interaction via Z^0

- Neutralinos can also interact via a different exchange particle: Z⁰
- spin-dependent interaction

 σ_{SD} : Spin Dependent

- exchange of an intermediate vector boson Z^0 with spin S = 1
- many SUSY models 'favour' Z⁰ : ⇒ we expect rather 'large' couplings

collision kinematics

Exp. Particle Physics - ETP

WIMP scattering off nuclei: spin-dependent \blacksquare Neutralinos can couple to the overall spin I of a nucleus via Z^0 exchange

- scattering amplitude depends on the spin orientation
- for σ_{SD} there is **no increase** in the interaction rate due to coherence, as Z^0 couples to the total nuclear spin J
- despite SUSY models 'favouring' Z^0 : we expect small contributions of σ_{SD} to total elastic *WIMP* – scattering *xsec*

neutralinos

collision kinematics

WIMP scattering off nuclei: spin-dependent

■ *Neutralinos* can couple to the overall spin *J* of a nucleus via Z^0 exchange ⇒ the target nucleus must possess $J \neq 0$

RECAP: Spin J of a nucleus & nucleon spins

Nucleons inside a nucleus are paired: nuclear spin from unpaired nucleon

- nuclear spin J arises from total angular momentum L of unpaired nucleon

Suitable detector materials for σ_{SD}

Nuclei with <u>unpaired nucleon</u> that can also be used as WIMP detector

- nuclear spin / due to unpaired nucleon

Suitable detector materials for σ_{SD}

Nuclei with unpaired nucleon that can be used as WIMP detector

- nuclear spin J due to unpaired nucleon

Suitable detector materials for σ_{SD}

- Nuclei with *unpaired nucleon p*, *n* that can be used for *DM* − searches
 - **spin-dependent** coupling to *unpaired proton* (a_p) or *neutron* (a_n)

detector type	isotope	fraction	protons	neutrons	spin J	coupling
NaJ	²³ Na	100%	11	12	3/2	a_p
(scintillator)	¹²⁷ I	100 %	53	74	5/2	a_p
LXe	¹³¹ Xe	21.2%	54	77	3/2	a _n
(liquid TPC)	¹²⁹ Xe	26.4 %	54	75	1/2	a _n
Ge (bolometer)	⁷³ Ge	7.8 %	32	41	9/2	a _n

Spin-dependent WIMP scattering cross section

- *WIMPs* moving with velocity v in the galactic DM – halo undergo an elastic scattering event with momentum transfer q^2

⇒ spin 'enhancement' factor (typcially 0.2...0.5)

spin structure function S(q): spatial distribution of spin inside the nucleus for different momentum transfer q

The spin 'enhancement' factor C_{spin}

We now consider in detail how the WIMP couples to the spin of the target

$a_{p,n}$: WIMP – coupling factor to p, n

takes into account the spin distribution on the quark level

(strength strongly depends on WIMP – flavour composition of SUSY – model)

 $\langle S_{p,n} \rangle$: **expectation values** for p, n – spin in a target nucleus (follows from detailed shell model calculations)

J: nuclear spin due to the *unpaired nucleon* (*proton/neutron*)

WIMPs: how do they couple to the nucleus?

• We now compare again the scalar (σ_{SI}) to spin-dependent (σ_{SD}) scattering

- we 'zoom out' from the *parton* level to *nucleons* then to the *nucleus*

1 – level of *partons*: *q*, *g*

 χ^0 – interaction with *quarks, gluons* χ^0 – coupling from specific *SUSY* – model

2 – level of *nucleons*: *p*, *n*

kinematics & spin within a *nucleon p, n* determined via *parton* – distributions (valence/sea–quarks, gluons)

15

WIMPs: how do they couple to the nucleus?

• We now compare again the scalar (σ_{SI}) to spin-dependent (σ_{SD}) scattering

- we 'zoom out' from the *parton* level to *nucleons* then to the *nucleus*
- 3 level of *nuclear* structure: *Ar*, *Ge*, *Xe*, ...
- χ^0 interaction with *nucleus*
 - ⇒ nuclear wave function using nuclear shell model
 - ⇒ form factors to describe the mass / spin distributions within the nucleus
 - kinematics of process coherent nuclear recoil

More details on the elastic nuclear recoil

due to the low energy transfer involved in a *WIMP* scattering off a *nucleus*: we do **not** have to consider **nuclear excitations** *A*^{*} (even for *uu* − *nuclei*)
 ⇒ purely elastic reaction kinematics*

- parameters:

- a) relative velocities
- **b**) masses M_{χ} and M_N
- c) scattering angle θ

* see Classical Exp. Phys. I

Reaction kinematics of WIMP scattering

We can use non-relativistic kinematics due to rather small WIMP velocities

$$E_{kin} = \frac{1}{2} \cdot M(\chi^0) \cdot \beta^2 \implies E_R < 100 \ keV$$

small nuclear recoil energy E_R : few tens of keV at maximum

- parameters:

a) relative velocities: $v \approx 10^{-3} \cdot c$ (*WIMP* in *DM* – halo)

b) masses M_{χ} and M_N : $M_{\chi,N} \approx 100 \ GeV$

c) scattering angle θ : $\theta = 0^{\circ} \dots 180^{\circ}$ (forward / backward)

Reaction kinematics of WIMP scattering

We now describe WIMP scattering off a target nucleus which is at rest

$$\boldsymbol{E}_{\boldsymbol{R}} = 2 \cdot \frac{\boldsymbol{\mu}}{\boldsymbol{M}_{\chi} + \boldsymbol{M}_{N}} \cdot \boldsymbol{E}_{kin} \cdot (1 - cos\theta)$$

 E_R : recoil energy of nucleus (usually in keV) E_{kin} : kinetic energy of WIMP (usually in keV)

 μ : reduced mass of *WIMP* – *nucleus* system

$$=\frac{M_{\chi}\cdot M_N}{M_{\chi}+M_N}$$

Reaction kinematics: equal masses

Optimum transfer of energy & momentum which maximises E_R for given E_{kin}

$$\boldsymbol{E}_{\boldsymbol{R},max} = \frac{1}{2} \cdot \boldsymbol{M}_{\boldsymbol{N}} \cdot \boldsymbol{\beta}^2$$

- identical mass scale

$$M_{\chi}=M_N:\ \mu=\frac{M_N}{2}$$

⇒ recoil nucleus receives
 full kinetic energy E_{kin}
 of incoming WIMP

Reaction kinematics: non-equal masses

non–optimum transfer of energy & momentum which impacts E_R

χ^0 – scattering off electrons: is it relevant?

Why can't we simply use electrons as target for WIMP scatterings?

$$\boldsymbol{E}_{\boldsymbol{R},\boldsymbol{max}} = \boldsymbol{2} \cdot \boldsymbol{M}_{\boldsymbol{e}} \cdot \boldsymbol{\beta}^2$$

- non-identical mass scale

 $M_{\chi} \gg M_e: \mu = M_e$

 $\Rightarrow \text{ recoil electron receives only} \\ \textbf{part of kinetic energy } E_{kin} \\ \text{ of incoming } WIMP \\ E_{R,max} \text{ is on the } eV - \text{ scale (undetectable)} \\ \end{cases}$

WIMP scattering in an actual DM – detector

How do I optimize my detector to observe elastic WIMP scattering?

- now that we have analysed the kinematics of elastic *WIMP* scattering: what are the most **important detector parameters** to observe it?
- *a*) how large should the target mass of my detector be?
- b) how low should the energy threshold of my detector be?
- c) how many WIMP scatterings will my detector see?

WIMP scattering in an actual DM – detector

We first calculate the rate R of elastic WIMP scatterings

- expected DM – event rate R in a detector with # of target nuclei N_{nucl}

WIMP scatterings as function of recoil energy E_R

- We now focus on integrated rate of events above a specific threshold $E > E_R$
- here we display the integrated number of events above a specific recoil energy E_R
- equivalent to an **integrated recoil energy spectrum** above threshold
- here we employ a flux-averaged value $\sigma_{SD} = 3.6 \cdot 10^{-45} \ cm^2$
- visualizes impact of nuclear mass M_N via kinematics & form factor F

WIMP scatterings: lowest threshold desirable

What happens in my solid-state detector after a WIMP interaction?

- nuclear recoil can be detected via three solid-state responses

Solid state response part – *I*: scintillation

- Emission and subsequent detection of scintillation photons
 - effective energy for detection of scintillation light: $\Delta E \sim 100 \ eV$ per photon

Solid state response part – *I*: scintillation

■ *DM* - detectors based purely on scintillation light: *DAMA* - *Libra*, *SABRE*, ...

- NaJ / CsJ / CaF₂ crystals with optical readout by PMTs
- each scintillation material has its specific emission properties: we aim for large light yield, fast decay time & optimum λ_m – match to PMT

scintillator	light yield (photons <i>keV</i> ⁻¹)	decay time $ au_{f}\left(ns ight)$	mean wave- length λ_m (<i>nm</i>)	n
NaJ (Tl)	38	230	415	1.85
CsJ (Tl)	65	800	540	1.86
$CaF_{2}(Eu)$	19	940	424	1.44

Solid state response part – *I*: scintillation

■ *DM* - detectors based purely on scintillation light: *DAMA* - *Libra*, *SABRE*, ...

- NaJ / CsJ / CaF₂ - crystals with optical readout by PMTs

Scintillation light in liquid noble gas detectors

Emission of scintillation light in the VUV (Vacuum Ultra-Violet) band

- later: large LXe / LAr - based TPCs, where VUV - scintillation occurs

discharge tubes: ionized **noble gases** (which is **not** based on a scintillation process!)

Solid state response part – II: phonons

Nuclear recoil results in the emission of a spherical phonon wave

- phonon: quasi-particle, corresponds to a 'quantized sound wave'
- detection of phonons requires detector operation at the *mK* scale

Solid state response part – *II*: phonons

Nuclear recoil results in the emission of a spherical phonon wave

- phonon: quasi-particle with very small energies on the meV scale
- detection of recoil energy E_R via thermistor $(\Delta T \rightarrow \Delta R)$

Solid state response part – *III*: electrons

Nuclear recoil results in the generation of electron—ion pairs (ionization)

- recoil nucleus has a very large stopping power $dE/dx \Rightarrow$ short recoil track
- high density of electrons & ions along the track: recombination

 we have to drift the electrons using strong electric drift fields to detector's anode for read—out

low-energy nuclear tracks vs. MIP*

Read-out of ionization signal: strong drift fields

Nuclear recoil results in the generation of electron—ion pairs (ionization)

- to generate an *e*⁻ & *ion* **pair**: **10** ... **20** *eV*
- separate $e^- \& ions$ via strong uniform \vec{E} field

nuclear tracks vs. *MIP*: use **range** to discriminate!!

Energy required to generate an e^- / ion (hole) pair

Ionization energies of different elements: characteristic atomic structure

High–Tech required for WIMP – detection

- We will combine 2 out of the 3 detection methods to get best sensitivity!
 - only by combining two methods we can achieve background discrimination

WIMP – detection via ionization & scintillation

Iarge-scale TPCs* with liquid noble gases: LXe & LAr

- ratio of scintillation light / electrons: excellent background discrimination

WIMP – detection via ionization & phonons

solid—state Ge - (Si -) detectors at the mK –scale with thermistor read—out

- ratio of electrons / phonons: excellent background discrimination

WIMP – detection via scintillation & phonons

Scintillating crystals ($CaWO_4$ **) at the** mK **– scale with thermistor read–out**

- ratio of photons / phonons: excellent background discrimination

Discriminating nuclear recoils from electrons

- Why do we need 2 parameters to discriminate signal from background?
 - a comparison of nuclar recoils vs. electron tracks (from γ background)

nuclear recoils: a closer look at their tracks

The value of dE/dx is key to the particle discrimination

- recoil nucleus with $E_R \sim keV$ – scale: extremely small range $R < 1 \ \mu m$

electron recoils: a closer look at their tracks

The value of dE/dx is key to the particle discrimination

- electron recoil with $E_R \sim keV$ – scale: rather large range $R \approx several \mu m$

Particle discrimination via quenching

- **The quenching effect due to different** dE/dx is key to successful **PID***
 - quenching observed for charge signal (scintillation light treated separately)

recoil energy E_R (keV)

- **quenching** of charge signal: typically **factor 3** ... 4

- *IMPORTANT*: the phonon signal remains *'unquenched'* for all particle species (*p*, ^A*Z*, *e*⁻)
⇒ this allows to determine recoil energy *E_R*

Particle discrimination via quenching

The quenching effect due to different dE/dx is key to successful *PID*

- quenching observed for charge signal (scintillation light treated separately)

Particle discrimination via quenching

The quenching effect due to different dE/dx is key to successful *PID*

Exp. Particle Physics - ETP

Search for DM: a competitive field worldwide

Many different technologies & detectors have been & are being developed

- how can we best compare the sensitivities of different experiments?

