

Astroparticle physics *I* – **Dark Matter**

Winter term 23/24 Lecture 19 Jan. 31, 2024

www.kit.edu

Recap of Lecture 18

Liquid noble gas experiments: 2 – phase read–out as leading technology

- *TPC* setup: liquid & gaseous phase with constant, homogeneous drift field with top & bottom *PMT* arrays
 S1: prompt scintillation in *VUV* range, *S2*: delayed electro–luminescence after drift of *e⁻* & extraction into gas phase
- excellent *PID* from ratio S1/S2, also: 3D position reconstruction & shielding
- *argon*: use of underground argon & *PSD* (fraction of early light) current (global) experiment: *DarkSide* 20k at *LNGS*
- *xenon*: cryo-distillation to purify, 3 large suites of experiments: *LZ* in the *US*, *XENON*(-1T, -nT), *DARWIN* at *LNGS*, *PANDA* in *Ch*

down to ν – floor

4.5.3 Cryogenic bolometers

Going down to the mK – scale: using phonons in a hunt for light *WIMPs*

cryo-bolometers: Ge, Si, CaWO₄

many single bolometers
total mass: < 100 kg

⇒ large relative surface</pre>

energy threshold: very small < 1 *keV*

sensitivity to very light WIMPs (MeV ... GeV scale)

2 – phase noble gas *TPC*s: *Xe*, *Ar*

TPC with large volume total mass: up to **50** *t* ⇒ small relative surface

energy threshold: rather high $\sim 4 - 10 \ keV$

sensitivity to very heavy WIMPs (GeV ... TeV scale)

Cryogenic bolometers vs. liquid noble gas

Going down to the mass m = g - scale: profiting from a large WIMP flux

cryo-bolometers: Ge, Si, CaWO₄

many single bolometers total mass: $kg \rightarrow g$ scale for high fluxes Φ_{DM}

energy threshold: < 100 *eV* ...

sensitivity to very small xsecs (down to v - floor)

2 – phase noble gas *TPC*s: *Xe*, *Ar*

TPC with large volume large $\emptyset = 2 \dots 3 m$ for small fluxes Φ_{DM}

energy threshold: rather high $\sim 4 - 10 \ keV$

sensitivity to very small xsecs (down to v – floor)

Cryogenic bolometers: WIMP recoil spectra

Hunting very light WIMPs: a very low-energy threshold is important

Cryogenic bolometers: explore low-mass WIMPs **VIM** Karlsruhe Institute of Technology Iow-mass WIMPs — CRESST-II 2014 CRESST-II 2015 CRESST-II 2012 (20) CRESST-II Comm. 2012 CRESST-II 2012 (1o) -- CDEX 2014 CDMSlite 2015 **CDMS-Si 2013** SuperCDMS 2014 CoGeNT 2013 10^{-37} - development **DAMIC 2012** ······ EDELWEISS 2012 DarkSide-50 2015 LUX 2013 WIMP o_{SI}(cm²) PandaX-I 2015 — — XENON100 2012 of novel, smallscale bolometers with an extremely

low threshold to push forward deep into the sub – GeV mass region of WIMPs down to γ – floor

Cryogenic bolometers: fundamental principle

- How does a low temperature bolometer detect WIMP recoils?
- phonon signal: read—out of nuclear recoil energy E_R via a thermistor

Cryogenic bolometers: fundamental principle

- How does a low temperature bolometer detect WIMP recoils?
- phonon signal: read—out of nuclear recoil energy E_R via a thermistor

- result: exceedingly **low**-energy threshold (light *WIMPs*)
- good energy resolution (~150 eV @ 6 keV)
- combining **phonons** with **ionisation** or **scintillation**:
 - ⇒ quenching for nuclear recoils
 - ⇒ **suppression** of gammas & electrons
- modular setup:
 - scaled up & expanded at later times if necessary: single detectors can be exchanged

Cryogenic bolometers: properties for *DM* – search

Disadvantages of bolometers of Ge, Si or CaWO₄

- read—out of *phonon* signal requires laborious
 cryogenic technology to maintain operating
 temperature of *T* ~ 10 *mK*
- read—out is **technologically challenging**, also signal feed—out from $mK \rightarrow RT$
- large number of small bolometers: fiducial volume
 cut has to be applied to each detector unit individually
- modular set—up implies a substantial mass for holding structures & read—out cables (potential bg – sources)

Cryogenic bolometers: phonon signal

How to read out the nuclear recoil signal E_R

- energy E_R is deposited in bulk material
 ⇒ tiny increase of temperature (μK) of absorber mass m
- parameters of modern bolometers

mass $m = 100 \dots 300 \text{ g}$ temperature $T = 10 \dots 20 \text{ mK}$

- thermometer ('thermistor'):

⇒ measures increase of ∆*T* ⇒ weakly coupled to heat bath to restore base temperature

Exp. Particle Physics - ETP

- we recall Debye's law for C_V in the very low temperature regime where bolometers operate: $T \ll T_{\Theta}$ (*Debye* temperature)

$$C_V \approx 10^{18} \cdot \left(\frac{T}{T_{\theta}}\right)^3 \frac{keV}{cm^3 \cdot K}$$

operate bolometer at lowest Tpossible to minimise value of C_V

- A key task: minimize specific heat C_V
- we now calculate the temperature increase ΔT of the absorber of volume V

$$\Delta T = \frac{E_R}{V \cdot C_V}$$

Cryogenic bolometers: specific heat C_V

 $C_V = 2 \ keV \ \mu K^{-1}$

Example for a bolometer with m = 100 g

T = 1 K $C_V = 130 MeV \mu K^{-1}$

T = 25 mK

- due to the very low recoil energies $E_R \sim keV$ a bolometer cannot be massive ($m < 1 \ kg$) & must be operated at the mK – regime

$$C_V \approx 10^{18} \cdot \left(\frac{T}{T_{\theta}}\right)^3 \frac{keV}{cm^3 \cdot K}$$

 T_{θ} = material-specific *Debye* temperature (*Ge*: 374 *K*, *Si*: 645 *K*)

Cryogenic bolometers: charge or light signal

perform PID by read-out of second signal

- additional sensors required for read—out of

ionisation

apply bias voltage to generate electric drift field \vec{E}_D amplify charge signal in amplifier

scintillation

16

generation of light signal proceeds via **excitons** (pseudo-particles) read-out: often via second thermistor

CaWO₄-bolometer

Cryogenic bolometers: properties of phonons

Propagation of a spherical phonon wave in the bolometer

- 3D phonon wave propagates outward from interaction point at speed of sound
- phonons: elementary lattice vibration modes: acoustic / optical phonons are quasi-particles
- quasi-ballistic phonons: can decay into ballistic phonons

phonon type	energy	thermodyamics*	
quasi-ballistic	1 10 <i>meV</i>	$E_{ph} \gg k_B \cdot T \ (T > 10 \ K)$	not in equilibrium
thermal	< 0.1 <i>meV</i>	$E_{ph} \sim k_B \cdot T \ (T < 1 \ K)$	in equilibrium

*conversion factor $1 K \sim 0.1 meV$

Cryogenic bolometers vs. ionisation

Comparing energies of phonons to electron-hole pairs

Cryogenic bolometers: thermistor read-out

THERMISTOR*: a resistor, which strongly changes (ΔR) for a small ΔT

- a **sensor** to measure the temperature increase of the absorber material with sensitivity on the μK **scale**
- optimisation: small $\Delta T \rightarrow$ large sensor signal in the form of a large change ΔR in resistivity
- phonon read-out via coupling into thermistor

- high-impedance sensors (NTD) for thermal (slow) phonons
- low-impedance sensors (TES) for ballistic (fast) phonons

Thermistors: high impedance NTD sensors

Neutron Transmutation Doped (NTD) germanium sensors

- precise **doping** of *Ge* is achieved by multiple **neutron irradiation** campaigns at a research reactor: ⇒ **optimise performance** of **high impedance** sensors
- NTD Ge at 30 mK: resistivity $R = 10^5 \dots 10^6 \Omega$

NTD - thermistor for phonon read-out

Thermistors: low impedance TES sensors

Superconducting Transition Edge Sensors (TES)

- read—out of (**fast**) **ballistic** phonons: operation at the centre of the small (few *mK* only) **transition region** in between *s*. *c*. & **normal** conducting state

TES – thermistors with SQUID read-out

a SQUID* for TES – readout is based on 2 Josephson contacts

- formed by a thin niobium ring & 2 Josephson contacts (sensitive to $\Delta B \sim 10^{-18} T$)
- absorbed **phonon** in *TES*: change of current in coil $L \Rightarrow \Delta \Phi$ of magnetic flux

CRESST* experiment: phonons & photons

heat bath

Hunting low mass WIMPs: scintillating bolometer crystals of CaWO₄

Superconducting Thermometers

Exp. Particle Physics - ETP

CRESST experiment: phonons & photons

Hunting low mass WIMPs: scintillating bolometer crystals of CaWO₄

scintillation light from absorber:
 read—out via separate, thin CaWO₄ bolometer
 with glued—on TES—thermistor

 phonon signal from absorber: read—out via with glued—on *TES* — thermistor

CRESST experiment: scintillation of $CaWO_4$

Primary particle interaction: generation of an *exciton*

- primary particle interaction: generation of *excitons*
 - = bound states of electron hole pairs with binding energies 10 meV & large radii

CRESST experiment: scintillation of CaWO₄

Light emission following the radiative recombination of an exciton: $\sim 1 \%$ of recoil energy is detected as light with $\lambda_{max} = 420 nm$

- primary particle interaction: generation of *excitons*
 - = bound states of electron hole pairs with binding energies 10 meV & large radii
- **recombination** of an exciton: will generate **scintillation light** with constant decay time $\tau \approx 1 \ \mu s$ for temperature regime $T = 20 \ mK \dots 4.2 \ K$

CRESST experiment: good **PID** in **CaWO**₄

- Light signal from exciton recombination is quenched for nuclear recoils
- nuclear recoils
 - due to the high energy loss dE/dx of the recoil nucleus: excitons will undergo non-radiative recombination ⇒ quenching
 - amount of **quenching** (see picture) is verified by experimental studies

CRESST experiment: good **PID** in **CaWO**₄

Light signal from exciton recombination is quenched for nuclear recoils

- nuclear recoils
 - due to the high energy loss dE/dx
 excitons will undergo non-radiative
 recombination ⇒ quenching
 - amount of **quenching** (see picture) is verified by theoretical studies

CRESST experiment: set-up at LNGS

- **Array of bolometers inside a** mK cryostat
- single $CaWO_4$ bolometer with mass $m = 100 \dots 300 g$
- WIMP induced nuclear recoils of ¹⁸⁴W, ⁴⁰Ca, ¹⁶O

CRESST: hunting WIMPs at the sub – GeV scale

Reducing the mass of single bolometers to reduce the energy threshold

- development of $CaWO_4$ bolometers of very small size: module *Lise*^{*} with m = 24 g
- advantage: very low threshold, as more scintillation photons will reach thermistor #2
- goal: reach an energy threshold of $E_{thres} \sim 100 \ eV$

push forward into WIMP
 masses at sub – GeV range

 $(2 \times 2 \times 1) \ cm^3$

- **Ge** bolometers at the mK scale with charge and phonon read–out
 - detector mass m < 1 kg \Rightarrow low E_{thres} for light WIMPs
 - read—out of slow (fast) phonons
 via either a NTD (TES) thermistor
 ⇒ determine recoil energy E_R
 - read—out of electron & hole signals
 via electric field at 2 electrodes
 ⇒ determine the *PID* on the
 basis of quenching

- **Ge** bolometers at the mK scale: read–out of the charge signal
 - detector mass m < 1 kg $\Rightarrow \text{ low } E_{thres} \text{ for light } WIMPs$
 - electrodes are optimized for charge transport as well as for reduction of background
 - segmented electrodes with different potentials allow to fine-form the drift field E_D

Cryogenic bolometers: ionisation

- **Ge** bolometers at the mK scale: read–out of the charge signal
 - detector mass m < 1 kg $\Rightarrow \text{ low } E_{thres} \text{ for light } WIMPs$
 - electrodes are optimized for charge transport as well as for reduction of background
 - segmented electrodes with different potentials allow to fine-form the drift field E_D

Cryogenic bolometers: ionisation

- **Ge** bolometers at the mK scale: read–out of the charge signal
 - read—out of both electrons & holes
 - green: active volume here the two charge carriers are being collected
 - red: inactive volume here the two charge carriers are NOT being collected, coincides with areas of high background

- *Ge* bolometers at the *mK* scale: charge and phonon signals
- key to a successful *PID*: measure **quenching** of the **charge signal**

 challenge: avoid partial charge collection close to the surface of a bolometer – this would look like a WIMP

coincidence: phonons & ionisation

- *Ge* bolometers at the *mK* scale: charge and phonon signals
- key to a successful *PID*: measure **quenching** of the **charge signal**

ionisation signal $\cong 1/3$ of phonon signal

■ *Ge* – bolometers at the *mK* – scale: charge and phonon signals

EDELWEISS* experiment at the LSM

■ *Ge* – bolometer array for light *WIMP*s at *L*aboratoire *S*outerrain de *M*odane

* Expérience pour détecter les WIMPs en Site Souterrain Exp. Particle Physics - ETP

EDELWEISS experiment at the LSM

- 20 yr long search for light WIMPs: set–up & history (KIT participated)
- 2000 2003: *Edelweiss I* with *m* = 1 *kg*3 bolometers
- 2008 2010: Edelweiss - II with m = 4 kg10 bolometers, each 400 g
- 2011 2019: *Edelweiss* - *III* with m = 32 kg40 bolometers, each 800 g

EDELWEISS experiment at the LSM

- **20** *yr* –long search for light *WIMP*s: results & impact
- **no** *WIMP* signal observed in *Edelweiss III*
- no further increase of the target mass
 ⇒ focus is now on a very low threshold E_R
 ⇒ hunt extremly light WIMPs
- a very **dynamic field** of work with many new detector ideas & new projects starting targeting mass regime m_{WIMP} < 1 *GeV*

Edelweiss – III setup: veto–scintillator & cryostat

Status of *DM* – searches with cryogenic bolometers

■ WIMPs: how light? how weak? - novel, *small* scale bolometers with an extremely low threshold to push forward deep into the sub – GeV mass region of WIMPs down to γ – floor

- **DM** searches at **LHC** & direct

- searches are complementary
- Higgs portal to DM: invisible width of the *Higgs*
 - $(\Rightarrow fermionic/scalar DM)$

Comparing limits from *LHC* with direct searches

Comparing limits from LHC with direct searches

- No undisputed signals: at the LHC, in indirect searches with gammas, neutrinos & positrons & in direct searches in underground labs
- supersymmetric *WIMP*s have evaded detection so far
- new experiments (*DARWIN*) & novel methods for *sub GeV* masses are upcoming...

Díd you manage to finally find this Dark Matter? Or, do I first need to get angry?

Exp. Particle Physics - ETP

43 Jan. 31, 2024 G. Drexlin – ATP-1 #19

Is Dark Matter super-symmetric, or, is it from ...

Dark Matter could arise due to other symmetries in nature that also require a (now completely different) extension of the Standard Model

