

Astroparticle physics I – Dark Matter

Winter term 23/24 Lecture 22 Feb. 14, 2024

www.kit.edu

Recap of Lecture 21

Axion detection in haloscopes & helioscopes

- detection: based on *Primakoff* effect using virtual photons in strong *B* field
- *axion* plot: limits & expectations for *axion* mass m_a & coupling $g_{a\gamma\gamma}$
- QCD axions: allowed band (KSVZ & DFSZ) & astrophysical limits
- axion searches: 3 methods haloscopes helioscopes & LSW experiments
- haloscopes: *DM* 'radio' in resonance cavity surrounded by *B* field (*ADMX*)
- helioscopes: convert keV scale solar axions into X rays via dipole (CAST,...)

BabyIAXO – a helioscope for the nearer future

Expected start of construction phase at DESY: 2025

- figure—of—merit: $\sim B^2 \cdot L^2 \cdot A$

- CAST: $21 T^2 m^4$
- BabyIAXO: ~ $230 T^2 m^4$
- *IAXO*: ~ $6000 T^2 m^4$

**IAXO* – *International AX*ion *O*bservatory

Helioscopes – **expected sensitivities**

Helioscopes & LSW experimental searches

Karlsruhe Institute of Technology

Experimental setups

- 'ultra-relativistic' axions
 from solar plasma
 convert energy to
 X -ray photons,
 no sensitivity to mass m_a
- *axions* produced via laser in optical cavity: *axions* propagate through wall, γ – regeneration in 2nd cavity, **no** sensitivity to mass m_a

Axion searches: Light-Shining-through-Walls

Converting a *photon* to an *axion* & back again

 applying the *Primakoff* effect twice to transmit light through a wall
 laser light passes transversal *B* – field

conversion into ALPs / axions

ALPs / axions can pass the wall

identical B – field: back–conversion

- disadvantage: second order weak effect

RECAP: Light Shining through the Universe

Surprisingly large range of TeV – gammas: conversion to axions/ALPs?

- key observation* of *TeV* – gamma astronomy:

- we detect $TeV \gamma$'s from great distances d, despite limited range of γ 's due to IR – light
- hypothesis:
 - $TeV \gamma$ converts close to its source to an *axion / ALP*
 - **2** galactic B field: axion / ALP converts back to $TeV \gamma$

Axion searches: Light-Shining-through-Walls

Converting a *photon* to an *axion* & back again: Primakoff effect 2nd order

- optical cavities (Fabry-Perot) enhance light intensity by huge factor
- cavities surrounded by dipole magnets: **laser light** \rightarrow *axion* /*ALP* \rightarrow **photon**

Using existing dipoles from HERA accelerator*

- laser ($\lambda = 1064 nm$) power in *FP* cavity: *P* = 150 *kW*
- length of optical cavity: $2 \times 124 m$

- magnets: 2×12 dipoles ($2 \times 106 m$) with B = 5.3 T (straightened)

 detect very small number of photons that have coupled into other cavity due to conversion & back-conversion via special *SQUID*s (Fabry-Perot operated at destructive interference)

alignment of optical resonators

 2×12 HERA dipole magnets

RECAP: HERA accelerator to study electron-proton collisions

- accelerator with circumference 6.3 km, $\sqrt{s} = 320 \ GeV$, in operation: 1992 ... 2007
- electron ($E = 27.5 \ GeV$) collisions with protons ($E = 920 \ GeV$): H1, ZEUS, ...
- investigations of inner structure (parton distributions) of proton
- many *s*. *c*. **dipole magnets** were available (had to be straigthened, see *CAST*)

RECAP: HERA accelerator to study electron-proton collisions

Principle

light from the laser
 beam gets amplified
 in the optical cavity
 (basically a huge
 ´mirror chamber´)

Principle

- light from the laser beam passes through a strong B - field by 12 s. c. dipoles photons can thus transform into axions with very small $P \sim 1: 10^{14}$

Principle

- light from the laser beam passes through a strong B - field by 12 s. c. dipoles photons can thus transform into axions with very small $P \sim 1 : 10^{14}$

Karlsruhe Institute of Technology

Principle

light from the laser beam is stopped by the wall.
 Axions will simply pass through the wall (*LSW* principle)

ALC: NO

ΚΙΤ Karlsruhe Institute of Technology

Principle

- in the **B** –field on the other side (regeneration cavity) axions will be transformed back into photons

3

The second

4

Karlsruhe Institute of Technology

Principle

as the principle involves a weak effekt to second order, also the detector must really be extremely sensitive to photons (has to detect a few γ´s / day)

AL PS

- **Status** @ *DESY*
- magnets are all powered up
- optical cavities store laser light for t = 6.75 ms(world-record!)

Impressions during installation phase

- dismanteling of the HERA accelerator

- dipoles of the former *HERA* accelerator: ready for installation

Impressions during installation phase

- construction works:

integration of the **optical cavities** into the magnet bores

connecting the **12** dipoles

Impressions during installation phase

- construction works $\mathbf{2019} - \mathbf{2023}$

- first light through the magnets

Impressions during installation phase

May 23, 2023: start of measurements!

'Light shining through a wall' experiment ALPS starts searching for dark matter

World's most sensitive instrument of its kind is to produce axions

The world's most sensitive model-independent experiment to search for particularly light particles, of which dark matter might be composed, starts today at DESY in the form of the 'light shining through a wall' experiment ALPS II. Scientific calculations predict that this ominous form of matter should occur five times as often in the

Expected sensitivities

- only sensitive to ALPs with mass $m_a < meV$ – scale & large coupling values $g_{a\gamma\gamma}$
- not sensitive to the parameter region of QCD – axions

Detection of 'true' CDM axions from halo

RECAP: axion parameters from lattice – QCD

- we expect CDM/QCD – axions with mass $m_a \sim 40 \dots 180 \mu eV$

 we expect CDM/QCD – axions with small
 couplings

Karlsruhe Institute of Technology

Detection of 'true' CDM axions from halo

■ RECAP: *axion* searches with cavities ⇒ resonant TM01 - mode

 10^{-6}

- cavities* have to be tuned to a **specific** axion mass m_a

*see Lect. #21: ADMX

Detection of 'true' CDM axions from halo

■ RECAP: *axion* searches with cavities ⇒ resonant *TM*01 – mode

- **resonant cavities:** not suitable for higher mass range $m_a = 40 \dots 180 \ \mu eV$
- cavity power *P*: scales as $P \sim$ volume *V* \Rightarrow the tuning volume* $V \sim \lambda_{a,Compt}^3$ to obtain resonance gets too small!

*with $\lambda_{a,Compt} \sim 1/m_a$ (see p.34)

Detection of wave–like *axions* at $m_a \sim 10^{-4} eV$

axion searches with dielectric haloscopes: a novel technique

- the *axion* field oscillates over the **de Broglie** wavelength λ_a
- idea: place dielectric
 discs (large ε_R) in a
 strong magnetic dipole
 field ⇒ coherent
 emission of radio
 waves at surfaces of
 circular discs

32 Feb. 14, 2024 G. Drexlin – ATP-1 #22

 $v_{aal} = 300 \ km/s$

Exp. Particle Physics - ETP

Detection of wave-like *axions*

axion searches with dielectric haloscopses: what about the signal?

- *⇒* axion behaves as a homogeneous & mono– chromatic & classical oscillating field
- $\Rightarrow \text{ induces a really tiny} \\ \text{oscillating electric} \\ \text{field } E_a(t) \\ \end{cases}$
- ⇒ emission of **radio waves** at discontinuity between media with ε_R

Detection of wave-like *axions* by radio waves

axion searches with dielectric haloscopses: what about the radio waves?

34 Feb. 14, 2024 G. Drexlin – ATP-1 #22

 $^*v_{gal} = \mathbf{10}^{-3} \cdot c$

Exp. Particle Physics - ETP

Detection of wave-like *axions*

axion searches with dielectric haloscopses: what about the radio power?

Dielectric haloscopes: enter *MADMAX**

Central element: large dielectric discs in B – field

- searching for CDM - axions with mass $m_a \approx 100 \ \mu eV$

Karlsruhe Institute of Technology

36 Feb. 14, 2024 G. Drexlin – ATP-1 #22 * MAgnetized Disc and Mirror Axion EXperiment Exp. Particle Physics - ETP

Dielectric haloscopes: disks of *MADMAX*

A 'booster array' of many large dielectric sapphire discs in strong B – field

- *axion* sensitivity scales as ~ $(B^2 \cdot A) \times$ coherence boost (10⁴) from many discs \Rightarrow goal: $B^2 \cdot A = 100 T^2 m^2$

Dielectric haloscopes: principle of *MADMAX*

- Axion field induces electromagnetic field at surfaces of dielectric discs
 - surface of one dielectric disc: discontinuity of axion induced electromagnetic oscillations (⇒ emission of radio waves)
 - many dielectric plates:
 coherent emission (constructive interference)

- expected *axion* signal power: 1 disc with $A = 1 m^2$ in $B_{ext} = 10 T$ $\Rightarrow P = 10^{-27} W$ (much too small...)

- solution:

large number of dielectrics & 1 mirror \Rightarrow coherence boosts signal by > 10⁴

Dielectric haloscopes: principle of *MADMAX*

Axion field induces electromagnetic field at surfaces of dielectric discs

- constructive interference of emitted radio waves: requires **extremely precise positioning** (μm **scale!**) of large, heavy dielectric discs in strong *B* field!
- variation of **distance** d between discs allows to scan axion mass range m_a

- dielectric discs made of lanthanum aluminate *LaAlO*₃ with ε_r = 24
 ⇒ generation of radio waves
- boosting of signal power: many resonant transitions of ε_r at surfaces
 ⇒ reasonable band—width in *axion* scans

Dielectric haloscopes: discs of *MADMAX*

Axion field induces electromagnetic field at surfaces of dielectric discs

- dielectric discs have to operate at cryogenic T = 4 Kin strong dipole fields $B_{ext} = 10 T$ over many years during scans
- highly accurate positioning of discs via piezo—driven actuators to
 a) maximise the coherence of all 80 disks
 - b) to scan the *axion* mass range by adjusting the disc distance *d*

Dielectric haloscopes: disks of *MADMAX*

Axion field induces electromagnetic field at surfaces of dielectric discs

dielectric discs: broad *R*&*D* works
 required flatness < 2 μm

Dielectric haloscopes: disks of *MADMAX*

Ongoing tests at different laboratories

- requirement on orientation of each disk with $\emptyset = 1 m$ is tilting $< 100 \, \mu m$ (from minimisation of the dielectric losses $\delta < 10^{-4}$)

Dielectric haloscopes: principle of *MADMAX*

Dielectric haloscopes: setup of *MADMAX*

Key features of s. c. dipole: ongoing studies by leading magnet companies

Parameter	Results	
J _E	50 A/mm ²	4
By (0,0,0)	-8.82 T	BiL
Bpeak (x,y,0)	9.85 T	BIL
Bpeak	9.87 T	NU
Overfield (B _{peak} /B ₀)	11.8 %	
FoM	94.4 T²m²	
H+ / H- (Z = 0.0 m)	-0.9 % / 5.0 %	
Energy	482 MJ	
Volume	4.435 m ³	
Length	5.0 m	_//

Dielectric haloscopes: testing of *MADMAX*

MADMAX and CERN's Morpurgo magnet

Project 200

- measurements with test set—up at
 40 yr old 'Morpurgo' magnet
 (B = 1.6 T) at CERN
- 2022: testing the positioning accuracy in a strong *B* field

The Morpurgo magnet, located in the North Area on the Prévessin site, will provide a magnetic field of up to 1,6 Tesla for the MADMAX prototype (Image: CERN)

MADMAX is preparing for a stopover at CERN from 2022. Mel Gibson, his artillery and quest for revenge will not be there, but instead a handful of physicists armed with an aged magnet will be searching for dark matter in CERN's North Area (not to be confused with a post-apocalyptic wasteland).

Dielectric haloscopes: prototyping for *MADMAX*

Setup of CB100: a physics prototype experiment at CERN

- prototype built at *DESY* and shipped to *CERN*
- prototype cryostat with a
 booster of 20 discs of
 Ø = 30 cm
- if prototype is well understood: obtain first competitive limits on ALPs at $m_a = 100 \ \mu eV$ (if a noise temperature $T = 8 \ K$ is reached) after 90 days of scans

Dielectric haloscopes: final setup of *MADMAX*

Comparison of experimental sensitivities

