

Astroparticle physics *I* **– Dark Matter**

Winter term 23/24 Lecture 4 Nov. 8, 2023

www.kit.edu

Recap of Lecture 3

umulti-messenger observations: all-sky maps in *CRs*, gammas, $\nu's \& GW$

- Mollweide projection with GC at the centre
- sources of messengers: SNR, GRB, AGN, pulsars, binary compact objects,...
- studies of charged cosmic rays (CR)
 - V. Hess (balloon), P. Auger (shower), J. Linsley (arrays, up to $10^{20} eV$)
 - energy spectrum of charged *CRs*: characteristic **power law**
 - direct *CR* detection via balloons & satellites (up to $\sim 10^{14} eV$): element composition allows to determine galactic storage time of *CRs*
 - indirect *CR* detection (above ~ $10^{13}eV$) via air shower arrays: 3 components

Air showers & jet physics at accelerators

a majority (~ 98%) of shower particles: from cascade $e^-e^+\gamma$

- cascade processes: pair production bremsstrahlung
- *Heitler* model for electromagnetic cascades:

- initial increase of # of particles
 (successive particle ´generations´)
- mean energy per particle decreases
- huge number of secondary, lowenergy particles: $e^-e^+\gamma$
- shower 'dies out' once $E < E_C$ with: E_C = critical energy

nucleus

γ

a majority (~ 98%) of shower particles: from cascade $e^-e^+\gamma$

- two processes: pair production bremsstrahlung

- radiative energy losses at high energies:

$$\left(\frac{dE}{dX}\right)_{brems} = \frac{1}{X_0} \cdot E$$

- important only for very **light particles** (e^-, e^+) :

 $\sigma_{Brems} \sim 1/m^2$

development of electromagnetic showers in the atmosphere

- key parameter: radiation length X₀
- for highly relativistic electrons:

i.e. after the passing of an atmospheric thickness $X = X_0$, the **energy** *E* of an e^- has dropped from E_0 to a fraction of 1/e

- for high-energy photons:

i.e. the mean free path λ_{pair} of high—energy photons for pair production in the atmosphere is given by

$$\lambda_{pair} = \frac{9}{7} \cdot X_0$$

$$E(x) = E_0 \cdot e^{-(X/X_0)}$$

electromagnetic showers: experimental signature & modelling

experimental shower signatures & modelling via simulation-codes*

ICARUS experiment neutrino—induced particle shower in a liquid argon calorimeter : interactions of a primary high—energy electron

CORSIKA simulation: photon—induced air shower

*see Mod. Ex. Phys. III

25 ↓

atmosphere as electromagnetic calorimeter: $\sim 25 X_0$

atmosphere (# of X_0)

Electromagnetic showers in the atmosphere

shower maximum X_{max} varies as function of primary energy E_0

atmospheric depth $X \left[g/cm^2 \right]$

Muonic component: *mips*

muons are minimum ionizing particles (m. i. p. s)

forces:

- **´cosmic**´ muons (slang: **´cosmics**´)
- from pion decays $\pi^{\pm} \rightarrow \mu^{\pm} + (\bar{\nu}_{\mu})$ in upper atmosphere
- flux density of muons at **sea level**: $d\Phi/dA \sim 100 \ \mu' s \ m^{-2} s^{-1}$
- charge ratio: $\mu^+/\mu^- = 1.2$
- overall fraction of secondary particles $\varepsilon_u \sim 1.7 \%$

application of air showers: muography

muography: muon rate depends on air pressure

Cosmic muons probe the interiors of tropical

PARTICLE AND NUCLEAR RESEARCH UPDATE

 advantage of using muons from showers:
 long range of μ in the atmosphere

cyclones

18 Oct 2022

Peering inside: the image on the right shows the interior of a cyclone. The redder areas are regions of lower pressure, and the greener areas are higher pressure. (Courtesy: Hiroyuki KM Tanaka)

Cosmic muons have been used to image structures deep within tropical storms, according to an international team of researchers. Led by <u>Hiroyuki</u> <u>Tanaka</u> at the University of Tokyo, the team used a network of muon detectors to identify differences in air density within several typhoons.

Muonic component: underground location!

muons are penetrating particles

- relativistic lifetime: $\tau = \gamma \cdot 2.2 \ \mu s$
- energy loss: $dE/dx = 2 MeV/cm (H_2O)$
- very penetrating shower component, despite massive shielding bunderground laboratory

Sn

2

N

7

Muons at the LHC and in astroparticle physics

muons from an acclerator (LHC)

accelerators: protons with up to $\sqrt{s} = 7 TeV$ (\sqrt{s} is known)

1400 muon chambers at magnetic return yoke

muons from cosmic accelerators

cosmic accelerators: protons (nuclei) with up to $E = 10^{20} eV$

shielding against muons in underground lab

detecto

Laboratori Nazionali del Gran Sasso

Hadronic component of air showers

Hadronic interactions in the atmosphere

- all hadrons $(p, n, \pi^+, \pi^-, \pi^0, K^+, K^-, K^0, ...)$: processes of the strong interaction, decays: \rightarrow hadronic (& electromagnetic) shower
- charged hadrons ($p, \pi^+, \pi^-, K^+, K^-, ...$): also \rightarrow electromagnetic interaction (i.e. ionisation)
- hadrons are localized in **shower core** (~0.3% fraction)
- hadrons are characterized by their large dE/dx

Hadronic component of air showers

Hadronic interactions in the atmosphere

- hadronic interaction length Λ measured in $[g/cm^2 \text{ or } cm]$
 - = mean length for inelastic scattering

 $\mathbf{\Lambda} = \frac{1}{\boldsymbol{\sigma} \cdot \boldsymbol{n}}$

σ: cross section with nucleusn: number of scatter centres

- atmospheric thickness corresponds $\sim 11~hadronic~interaction~lengths~\Lambda$

Hadronic component of air showers

Hadronic interactions: HCAL characteristics at the LHC & in the atmosphere

μ

μ*

μ

 μ^{+}

μ

n

μ*

e⁺

μ

Features of an extended air shower

Extended air showers – time development

Longitudinal air shower profile = shower particles as function of height z

Shower parameters: extracting primary energy E_0

- Lateral distribution of air showers = the 'footprint' at the surface, which allows to determine energy E₀
 - extraction of E_0 via

 $\begin{bmatrix}
 N_e &= \text{number of electrons} \\
 N_{\mu} &= \text{number of muons}
 \end{bmatrix} \text{ in a shower}$

via integration of lateral distribution $\rho(r)$

- analytical parameterisation of $\rho(r)$ via a so-called *Greisen* – fit * *Kenneth Greisen*

(*details in ATP - 2 'cosmic rays')

Combining lateral $\rho(r)$ with longitudinal profile

Method 1: longitudinal distributions – example nucleus Fe vs. proton p

- longitudinal profiles allow to discriminate heavy nuclei from light ones & protons

heavy nuclei (⁵⁶₂₆Fe):

- extended size of Coulomb fields (Z = 26)
 - nuclei already interact in topmost atmospheric layers

\Rightarrow smaller X_{max}

Method 1: longitudinal distributions – example nucleus Fe vs. proton p

- longitudinal profiles allow to discriminate heavy nuclei from light ones & protons

lightest nuclei (incl. p):

- smaller size of Coulomb fields
 (Z = 1, ...)
 - light nuclei penetrate to
 deeper atmospheric layers
 - \Rightarrow larger X_{max} & large fluctuations

- Method 2: lateral distributions heavy nuclei Fe vs. light ones (proton p)
- surface measurements allow to determine the ratio N_e/N_{μ} :

electron number N_e – muon number N_{μ}

electrons (e):

- #: in general much more e than μ
- *e* have a **short range** in atmosphere

 \Rightarrow reach surface only from larger X

muons (μ):

- #: in general much less μ than e
- μ have a <u>large range</u> in atmosphere

 \Rightarrow reach surface also from smaller X

- Method 2: lateral distributions heavy nuclei Fe vs. light ones (proton p)
- surface measurements allow to determine the ratio N_e/N_{μ} :

32 Nov. 8, 2023 G. Drexlin – ATP-1 #4

**M*ulti–*W*ire *P*roportional *C*hamber

Exp. Particle Physics - ETP

KASCADE experiment at KIT

KASCADE – three main components

Array:

 $\begin{array}{l} 16 \times 16 \text{ detector stations} \\ \text{detectors for muons / electrons} \\ \text{trigger electronics for entire shower} \end{array}$

central calorimeter (HCAL):

TMS^{*} ionisation chambers ⇒ detection of hadronic shower core

muon tunnel:

sampling of muon distribution

KASCADE experiment

The detector array to measure electron & muon distributions separately

Muon number N_{μ} and electron number N_e :

separate measurement via 2 scintillator layers
 with massive Pb – shielding in between

KASCADE – Grande experiment at KIT

Extending the detector array to measure up to higher *CR* energies

KASCADE – measuring mass **A** of primary nuclei

- measuring N_e and N_{μ} : using sum $N_e + N_{\mu}$ & ratio N_e/N_{μ}
- good correlation of N_e and N_μ \Rightarrow sum $N_e + N_\mu$ as indicator for primary energy E_0
- light nuclei (p, α, ¹²C): reactions start deep in atmosphere
 startio N_e/N_μ large: small A
- heavy nuclei (⁵⁶Fe): reactions start at top of atmosphere
 γatio N_e/N_μ small: large A

10

Q: KIT

7.0

CR energy spectra – the knee

- Distinct feature: change of spectral index & mass composition of CRs
 - at characteristic energy E_1 :
 - change of energy spectral index γ
 - change of mass composition: light $(p) \rightarrow$ heavy nuclei $({}^{56}Fe)$
 - galactic *CR* acclerators = *SN* shocks \rightarrow *SNR* reach their maximum energy *E*₀
 - the 'ankle': change of accleration sites galactic \(\Rightarrow extragalactic)

CR energy spectra – the p, Fe knee

- observation of several 'knees': from the p knee up to the Fe knee
 - important: different nuclear charges

CR energy spectra – the p, Fe knee

• observation of several 'knees': from the p – knee up to the Fe – knee

