

Astroparticle physics *I* **– Dark Matter**

Winter term 23/24 Lecture 5 Nov. 9, 2023

www.kit.edu

Recap of Lecture 4

Extensive air showers: lateral & longitudinal distributions

- primary *CR* energy *E*₀:

use integration over **lateral** distributions of $N_e + N_\mu$ ('foot print') as good indicator for E_0 (Greisen-fits to be matched to *CORSIKA* simulations)

- primary *CR* mass *M*:

use observed **longitudinal** distribution to determine shower maximum X_{max}

- heavy CR (⁵⁶Fe): small $X_{max} \Rightarrow$ small ratio N_e/N_{μ}
- light CR(p) : large $X_{max} \Rightarrow$ large ratio N_e/N_{μ}

Pioneering air shower experiment KASCADE at KIT Campus North

- components: large scintillator array, muon tunnel, central hadron calorimeter
- extension to **KASCADE Grande**: at knee change of mass composition

Power-Law feature: element-specific 'knees'

Power–Law feature: element–specific 'knees'

10⁵

Knee due to particle losses during propagation?

- Propagation of CRs with energy E & mass A
 - GALPROP MC Code
 transport of galactic CRs from the
 source to Earth: impact of diffusion
 (particles propagate in ´leaky box´)
 - **detailed modelling** of effects due to *CR* propagation:
 - a) orientation of galactic B fields
 - b) energy losses (light particles):
 - inverse Compton effect
 - emission of synchrotron radiation

Propagation of cosmic rays in our galaxy

- Charged *CRs*: guided by galactic magnetic fields with $B \sim \text{few } \mu G$
 - important parameter:

Larmor radius R_L

$$\boldsymbol{R_L} = \boldsymbol{1} \ \boldsymbol{pc} \cdot \left(\frac{\boldsymbol{E}}{\boldsymbol{10^{15} \ eV}}\right) \cdot \left(\frac{\boldsymbol{1} \ \boldsymbol{\mu G}}{\boldsymbol{Z} \cdot \boldsymbol{B}}\right)$$

- for *CRs* at **high** energies:

 $R_L > d = 0.3 \, kpc$

⇒ these *CR* nuclei will *leave* the galaxis

Propagation of cosmic rays in our galaxy

- Charged *CRs*: guided by galactic magnetic fields with $B \sim \text{few } \mu G$
 - important parameter:

Larmor radius R_L

$$\boldsymbol{R_L} = \boldsymbol{1} \ \boldsymbol{pc} \cdot \left(\frac{\boldsymbol{E}}{\boldsymbol{10^{15} \ eV}}\right) \cdot \left(\frac{\boldsymbol{1} \ \boldsymbol{\mu G}}{\boldsymbol{Z} \cdot \boldsymbol{B}}\right)$$

- for *CRs* at **low** energies:

 $R_L < d = 0.3 \ kpc$

⇒ these *CR* nuclei are trapped in galaxis on time scales $\tau \sim 3 \dots 10 \cdot 10^6 \ yr$

CR spectrum feature: the ankle

Reconstructing the arrival direction of CRs from the shower axis

What is the degree of isotropy of cosmic rays?

- galactic CRs:
 many sources, energies ~10¹⁵ eV,
 galactic B fields result in deflection
 ⇒ expect a high degree of isotropy
- extra—galactic CRs: fewer sources at scales of UHECRs
 ⇒ nearby sources could be identified
- the **axis of a large air shower** allows to reconstruct the arrival direction of the primary particle

Results for galactic cosmic rays at $E \sim 10^{15} eV$

The observed distribution of galactic CRs is indeed isotropic to first order

KASCADE results (> 10 years):

- to first order ($\sim 10^{-3}$): data show an **isotropic arrival distribution**
- conclusions: there are
 - ♦ no nearby sources of CRs
 - No neutral primaries (gammas) which could initiate showers & which would point back to sources of CRs

KASCADE: arrival distribution of **CRs**

Looking very precisely: a vey small anisotropy!

- anisotropic arrival distribution with small dipole amplitude $A \sim 6 \cdot 10^{-4}$

Anisotropy at ultra-high energies: Southern view

Pierre Auger Observatory* reveals spatial anisotropy at energies E > 8 EeV

Anisotropy at ultra—high energies: northern view

The *Telescope Array* reveals a localised 'hot spot' above $E = 5.7 \cdot 10^{19} eV$

Telescope Array (TA) experiment in Utah (US) observes **UHECRs** in nothern hemisphere

- data taking since 2008: 27 events come from only 6 % of the area being surveyed: a clear hot spot of UHECR

13

Cosmic accelerators: principles

- galactic/extra-galactic accelerators: who powers them & how do they do it?
- where does the **energy** for *CRs* come from?
- what is the **efficiency** of cosmic accelerators?
- can cosmic accelerators work over long time scales?
- how do cosmic acclerators work up to $10^{15} \dots 10^{20} eV$?
- what **limits** the energy of galactic acclerators?
- why do **extra-galactic** accelerators go beyond?

Local (galactic) energy densities: an overview

CR energy density: galactic sources must be able to provide this value

local energy densities in the Milky Way		
electromagnetic radiation (star light)	$\sim 0.6 \ eV/cm^3$	
galactic magnetic field $\sim B^2/2 \ \mu_0 \ (3 \ \mu G)$	$\sim 0.25 \ eV/cm^3$	
cosmic microwave background (CMB)	$\sim 0.26 \ eV/cm^3$	
cosmic rays	$\sim 1 \ eV/cm^3$	
local matter density (WIMPs)	$\sim 0.3 \ GeV/cm^3$	

 \approx

- fields

CMB

 \approx

light

CRS

 \approx

comparison of $W_{SN} \& W_{CR}$ in galaxis

CR

SNR

Do galactic supernovae provide enough power W to account for CRs?

- total energy/year *W_{CR}* going into galactic cosmic rays

$$W_{CR} = \rho_{CR} \cdot \pi \cdot R^2 \cdot d \cdot \tau^{-1} = 2 \cdot 10^{41} J/yr$$

- total energy/year W_{SN} produced by **supernovae** in galaxis

 $W_{SN} \sim 3 SN - \text{explosions/century} = 5 \cdot 10^{42} J/yr$

■ supernovae = ideal candidate sites* for galactic CR required efficiency for $W_{CR} \rightarrow W_{SN}$: < 5%

16 Nov. 9, 2023 G. Drexlin – ATP-1 #5 **CR* acceleration in SN – shock fronts

Sources of Cosmic Rays in our galaxy

• the most likely Cosmic Ray sources in our galaxy at $E \sim 10^{15} eV$

supernovae: shock fronts

- shock fronts in *SNR*: energy distribution? maximum energy E_0 ? what nuclei ${}^{A}Z$?

pulsars, pulsar wind nebulae

acceleration mechanism:
 hadronic / leptonic schemes?

Accleration mechanism for CRs

Fundamental physics principles to accelerate particles

- dynamical

scattering (reflection) of particles in magnetic clouds (**Fermi**-acceleration)

- hydrodynamic

accleration in plasma sheets

- electromagnetic

time-variable *E*, *B* - fields

$$\frac{d}{dt}(\gamma \cdot \boldsymbol{m} \cdot \vec{\boldsymbol{v}}) = \qquad \text{with}$$
$$e \cdot \left(\vec{\boldsymbol{E}} + \vec{\boldsymbol{v}} \times \vec{\boldsymbol{B}}\right) \qquad \vec{\boldsymbol{\nabla}} \times \vec{\boldsymbol{E}} = -\frac{\partial \vec{\boldsymbol{B}}}{\partial t}$$

- *SN* – shock front:

spreads out into the very thin ISM^* over extended time scales of $t = 10^4 \dots 10^5 yr$

Fermi accleration in shock fronts of SN remnants

■ Simplified 1*D* −

scenario

*Inter-Stellar Medium

CIT

Fermi accleration in shock fronts of SN remnants

Simplified 1D – scenario

- SN - shockfront propagates with $u_s \cong 10^4 \ km/s$ or $\beta_s = 0.03$

- β_s will decrease over time

Fermi accleration in shock fronts of SN remnants

important: there is a density gradient at the transition to ISM

- *ISM*: density ρ_1 , shock: density ρ_2
- plasma physics: ratio ρ_2/ρ_1 depends on the adiabatic coefficient γ_{ad}

Fermi accleration in shock fronts of SN remnants

- The process of Fermi acceleration of *CRs* comprises several key steps:
 - charged nucleus from *ISM* with primary energy E_0 passes the SN –shock front: energy gain ΔE
 - B fields within the gas of the shock front back-reflect nucleus: adiabatic process without energy loss!
 - nucleus again passes passes pressure gradient (in opposite direction): again energy gain ΔE
 - further adiabatic backscattering of nucleus due to electro-magnetic fields in the ISM

23 Nov. 9, 2023 G. Drexlin – ATP-1 #5

Exp. Particle Physics - ETP

Fermi accleration in shock fronts: an analogon

En

 $-u_s$

a mechanic analogon for illustration

- ping pong ball **reflected** by a wall which moves against ball with u_s
 - distance between the wall and table tennis racket is reduced
 - ⇒ ball is accelerated, and (if this can be repeated) it will be ever faster

n = 1

Fermi accleration in shock fronts: a net gain

- Summing up: the CR nucleus gains energy
 - by Fermi acceleration, which is ...
 - ... based on the multiple passing of a SN shockfront
 - ... a collision-free process, i.e. **no energy losses** due to inelastic scattering in the gas of the shock front

Energy gain ΔE

for a **single acceleration cycle** (& independent of the direction of the nucleus) one obtains a **net energy gain**

$$\frac{\Delta E}{E} = \frac{u_s}{c} = \beta_s$$

25 Nov. 9, 2023 G. Drexlin – ATP-1 #5

Fermi accleration in shock fronts: many cycles

Summing up: single cycle vs. multiple cycles

- net energy gain ΔE per single accleration cycle

$$\Delta E = \boldsymbol{\alpha} \cdot \boldsymbol{E}$$

- *CR* energy *E* after *n* accleration cycles (for starting energy E_0) $E = E_0 \cdot (1 + \alpha)^n$

- **number**
$$n$$
 of acceleration cycles to reach
maximum energy E :

$$n = \frac{\ln(E/E_0)}{\ln(1+\alpha)}$$

Exp. Particle Physics - ETP

Origin of the CR power-law distribution

power-law distribution due to Fermi acceleration

 taking into account an energy– dependent probability P for particle losses during the acceleration cycle, we obtain a characteristic power–law distribution

$$\frac{dN(E)}{dE} \sim E^{-2.7}$$
power-law spectrum

Maximum energy of CRs due to SN shocks?

Maximum energy of *CR* via famous Hillas formula

B

■ *A.M. Hillas*: cosmic acclerators use a *B* − field of size *L* to guide particles

ximum energy
$$E_{max}$$
 of a particle of **charge** *Z*
SN shock front (based on dimensional arguments !)
 $E_{max} \sim \beta_S \cdot Z \cdot B \cdot L$
particle:
- nuclear charge *Z*
source:
- field strength *B*
- size *L*

- shock velocity β_s

Hillas plot for *UHECRs* up to $E_{max} = 10^{20} eV$

large L / small B

B - field $\dots 10^{-9} T$ dimension $1 Mpc \dots$

*s. ATP - 2 summer term 2024

Hillas plot for *UHECRs* up to $E_{max} = 10^{20} eV$

30 Nov. 9, 2023 G. Drexlin – ATP-1 #5

*s. ATP - 2 summer term 2024

Exp. Particle Physics - ETP

Energy spectrum of **UHECR**

Energy spectrum of UHECR & acclerators

Energy spectrum of high–energy CRs & features Karlsruhe Institute of Technology Energy spectrum knee **10**¹⁷ *heavy* of extra-galactic CRs: $\gamma = 2.7$ knee **10**¹⁶ - change of 1.5) v = 3.0acceleration sites ÉH) cut off **10¹⁵** tidal disruption event tidal disruptions? [ankle] **10**¹⁴ \sim m black hole star **10**¹³ $E_{max} \sim \beta_S \cdot (Z)$ $B \cdot L$ **10¹⁸ 10²⁰ 10**¹⁴ **10¹⁶** -30

35 Nov. 9, 2023 G. Drexlin – ATP-1 #5

-60

Exp. Particle Physics - ETP

primary energy E(eV)

Energy spectrum of high–energy *CRs* & features Karlsruhe Institute of Technology Energy spectrum knee **10**¹⁷ ŦŦŦŦŦ of extra-galactic CRs: *heavy* $\gamma = 2.7$ knee' **10**¹⁶ - change of 1.5) v = 3.0acceleration sites cut off Ш **10**¹⁵ AGN with super-AGNs? massive black hole [ankle] 11 10^{14} 5 \sim **10**¹³ $E_{max} \sim \beta_S \cdot (Z)$ $B \cdot L$ 1 1 1 1 1 1 1 1 **10**¹⁶ **10¹⁸ 10²⁰ 10¹⁴**

primary energy E(eV)

