

Astroparticle physics *I* **– Dark Matter**

Winter term 23/24 Lecture 9 Nov. 30, 2023

www.kit.edu

Recap of Lecture 8

VHE ... UHE gammas: source modelling & detection with IACTs

- VHE γ induced showers: narrow Cherenkov cone (1°) by relativistic e^+ , e^-
- shower profile to discriminate against events from charged CRs
- arrays of IACTs for stereoscopic view & better gamma sensitivity
- source modelling: hadronic $(\pi^0 \rightarrow \gamma \gamma)$ vs. leptonic $(e^- + \gamma \rightarrow \gamma + e^-)$
- leading observatories: MAGIC (La Palma), H.E.S.S. (Namibia), ...
- scan of the galactic plane: new sources SNRs, pulsar wind nebulae, ...

Scanning the galactic plane for UHE gammas

I first scan (2004) with H.E.S.S. over > 600 h : 15 new sources at TeV - scale

Scanning the galactic plane for UHE gammas

2004: strong UHE gamma emission* from the galactic center!

Nov. 30, 2023 G. Drexlin – ATP-1 #9 *WE will return to Sgr A in our Dark Matter search! Exp. Particle Physics - ETP

Scanning the galactic plane for UHE gammas

gamma emission from dark matter annihilation close to galactic center?

Looking beyond the galactic plane: quasar 3C279

MAGIC: first observation at E > 50 GeV of a distant quasar at d = 1.8 Gpc

6 Nov. 30, 2023 G. Drexlin – ATP-1 #9 *see Lect. 2 & later chapter 4.6.1 on axions

gamma properties studies with quasar 3C279

RECAP: limited range of UHE gammas due to extragalactic IR light

gamma properties studies with quasar 3C279

- Search for violations of Lorentz invariance with UHE gammas from a quasar
- do *UHE* gammas of different energies travel faster/ slower? If yes, this would violate Lorentz invariance

CTA observatory – the future of gamma astronomy

Cherenkov Telescope Array (CTA) – 118 telescopes at 2 observation sites

- Northern & Southern hemisphere arrays: present status – planning/building stage

CTA observatory: 3 different telescope sizes

■ From Large (LST) to Medium (MST) to Small (SST) – Sized Telescopes

SST: 70 at Southern observatory
 1 ... 300 TeV

MST: 25 at Southern 15 at Northern 150 GeV ... 5 TeV

LST: 4 at Southern
4 at Northern
20 ... 50 GeV

CTA observatory: 118 telescopes @ 2 sites

Exploring VHE ... UHE gamma sources of the Northern & Southern sky

CTA observatory: status at the 2 different sites

Ongoing design & construction works at both sites

CTA observatory: inauguration of LST - 1

Inauguration ceremony of LST – 1 (La Palma) in 2018

CTA observatory: comparison of sensitivities

Scientific goals of CTA

- search for **new** (fainter) *VHE* gamma sources
- better discrimination of hadronic/leptonic scenarios (cosmic *LHC* or *LEP*?)
- search for new physics
 (signal from dark matter annihilation at galactic center)

CTA observatory: comparison of gamma sources

Expected *CTA* sources *vs.* observed gamma sources with *H*.*E*.*S*.*S*.

Exp. Particle Physics - ETP

Karlsruhe Institute of Technology

Gamma astronomy: lobbying for *CTA* funds...

No good argument in VHE/UHE gamma astronomy due to EBL/3K radiation!

Goodbye, multi-messengers, hello rare events

A final, very recent observation in the field of cosmic ray physics

- the *Telescope Array* (*US*) experiment announces an event with the second highest energy ever observed (from an empty region without galaxy clusters!)

 $E = 2.4 \cdot 10^{20} eV$

The most powerful cosmic ray since the Oh-My-God particle puzzles scientists

nature

Scientists spot a particle of intense energy, but explaining where it came from might require some new physics.

Scientists detect a cosmic ray that's almost as powerful as the 'Oh-My-God' particle

 \Rightarrow but: what about **GZK** – cutoff?

2.2 Search for Rare Events

■ Observing novel physics beyond the Standard Model: ⇒ rare event searches

Rare event searches: principles & technologies

Why do I need to operate my new detector in an underground laboratory?

Laboratori Nazionali del Gran Sasso

Rare events: example search for $0\nu\beta\beta$ process

Rare events: example search for $0\nu\beta\beta$ process

Goal: observe the 'peak' from $0\nu\beta\beta$ events in an enriched ⁷⁶Ge detector

IT

Rare events: example $0\nu\beta\beta$ – decay search

Task: identify & then eliminate each radioactive element in your detector

Rare events: example of what can go wrong ...*

Task: install the inner nylon balloon to contain enriched xenon

Rare events: example of what can go wrong

Impact of ^{134}Cs on inner nylon balloon: background for a $0\nu\beta\beta$ experiment

- **Fukushima** nuclear accident: large release of radioactive nuclides such as isotope ^{134}Cs (undergoes β - decay + 2 γ 's)

```
Q = 2.06 MeV
```


26 Nov. 30, 2023 G. Drexlin

G. Drexlin – ATP-1 #9

Fukushima nuclear accident - Wikipedia

Exp. Particle Physics - ETP

Rare events: example of what can go wrong

Impact of ^{134}Cs on inner nylon balloon: background for a $0\nu\beta\beta$ experiment

- **Fukushima** nuclear accident: large release of radioactive nuclides such as isotope ^{134}Cs (undergoes β - decay + 2 γ 's)
- inner balloon was produced in nearby Sendai in March 2011: small contamination with¹³⁴Cs
- result of measurements:
 ⇒ remove contaminated nylon
 & install a new clean one

Rare events: example search for Dark Matter (DM)

Goal: observe the 'recoil signature' of a DM particle (here: WIMP)

- *DM* signal detected by nuclear recoil with energy *E* < 100 *keV*
- point–like energy deposition

How do I calculate the expected signal rate?

Is the 'beam' of dark matter particles intense & my detector large enough?

How do I calculate the expected signal rate?

Is the 'beam' of dark matter particles intense & my detector large enough?

Example* of incoming beam of particles (accelerator, dark matter: WIMPs)

- cross sectio	[<i>cm</i> ²]	
- particle velocity v_i		[cm/s]
- number density n s		[<i>cm</i> ³]
- flux density J		$[cm^{-2} s^{-1}]$
	$J = n_S \cdot v_i$]
- flux \Phi		$[s^{-1}]$
$\Phi = J \cdot A$		$= n_S \cdot v_i \cdot A$

Example of incoming beam of particles hitting a thin target (single interaction)

- target density ho [g/cm^3]
- target length *L* [*cm*]
- target atomic mass M_A [u]
- number density n_t [cm^{-3}]

$$n_t = \rho \cdot N_A / M_A$$

- # of nuclei in beam N_t

32

$$N_t = n_t \cdot L \cdot A$$

 $N_A = 6.022 \cdot 10^{23}$ / mol n_{c} ρ target M_A

Nov. 30, 2023 G. Drexlin – ATP-1 #9 $u=1.6605\cdot 10^{-27}kg$ (atomic mass unit)

Interaction rate $W_r \& \#$ of signal events N_s of incoming WIMPs in a detector

- total cross section σ_{tot} [cm^2]
- # of targets in beam N_t []
- WIMP flux density $\int [cm^{-2} s^{-1}]$

- # of signal events N_s []
- interaction rate W_r [s^{-1}]

$$W_r = dN_S/dt = J \cdot N_t \cdot \sigma_{tot}$$

background processes in a detector with typical cross section $\sigma_{tot} \sim mb$

- unit of total cross section σ_{tot} [$cm^2 \ or \ barn^*$]

 $**mb = milli - barn = 10^{-27}cm^2$

WIMP signals in a detector with expected cross section $\sigma_{tot} < 10^{-24} b$

- exceedingly small expected WIMP cross section σ_{tot}

expected signal rates in a dark matter detector

WIMP signals in a detector with expected cross section $\sigma_{tot} < 10^{-48} \ cm^2$

Signal vs. background: no signal (yet)?

Statistical fluctuations of signal & background: confidence intervals

- No signal: exclusion of parameter interverals at 90 (95) % confidence level

Signal vs. background: is this a detection (yet)?

Statistical fluctuations of signal & background: confidence intervals

- signal: detection of new physics signal requires $> 5 \sigma$ (standard deviations)

Signal vs. background: is this a detection (yet)?

- Statistical fluctuations of signal & background: blind analysis
 - **signal:** region close to it has to be **blinded** during systematic tests **to avoid any bias in analysis**

2.2.1 Background processes

Dominant background sources: natural radioactivity & cosmic rays $(\mu's)$

Background processes – comparison of rates

Dominant background sources: natural radioactivity & cosmic rays $(\mu's)$

 $10^{-3} \dots 10^{-4}$ events $kg^{-1}day^{-1}$ for *WIMP* signal region

cosmic background - rate: 0.1 events $kg^{-1}s^{-1}$ 10^4 events $kg^{-1}day^{-1}$ A Matter 2 Mass. minimum ionizatior

41

Decay processes of unstable nuclei: background

Radioactive decay law and units

- the activity A(t) of an unstable isotope is...

$$\boldsymbol{A} = \frac{dN}{dt} = -\boldsymbol{\lambda} \cdot \boldsymbol{N}$$

... describing the number dN of decays per unit time dt

... proportional to the decay constant λ (\equiv decay probability per unit time* dt)

... <u>not</u> a constant, as the ensemble size *N* is decreasing over time *t* due to decay processes ⇒ activity *A* of ensemble will decrease

... decreasing **exponentially** (**decay law**)

 $A(t) = A(0) \cdot e^{-\lambda \cdot t}$

A3 Nov. 30, 2023 G. Drexlin – ATP-1 #9 ***for all** $dt \ll t_{\frac{1}{2}}$ (i.e. for long $t_{\frac{1}{2}}$: dt = 1 s)

Radioactive decay law and units

- the activity A(t) of an unstable isotope is measured...

1 Bequerel = 1 decay/s	$1 Curie = 3.7 \cdot 10^{10} decays/s$	Parameter and
$1 Bq = 2.70 \cdot 10^{-11} Ci$ after Henri Becquerel)	1 <i>Ci</i> = activity of 1 <i>g</i> radium (²²⁶ <i>Ra</i>) (after <i>Pierre Curie</i>)	

- ... sources vary from $A = \mu Ci$ (*KIT* lab course) up to A = MCi (radiation lab)

- use of strong artificial ν sources: *GALLEX*
- ⁵¹*Cr* source: $A = (1.67 \pm 0.03) MCi$ isotope decays via an e^- - capture process:

$${}^{51}Cr + e^- \rightarrow {}^{51}V + \nu_e + \gamma$$

- half–life $t_{1/2} = 27.7 \ days$
- calibration of solar neutrino detector GALLEX*

Radioactive decay: articifical sources in astroparticle physics

- use of strong artificial v sources: SOX
- ${}^{51}Cr$ source: A = 5 10 MCidecays via e^- - capture process:

$${}^{51}Cr + e^- \rightarrow {}^{51}V + \nu_e + \gamma$$

- search for sterile $\nu's$ with **BOREXINO** detector*

Short distance neutrino Oscillations with BoreXino

VEANCELLI

Decay processes – activity of *potassium* – 40

- Radioactive decay: natural sources in environment
 - natural radioactivity in organic matter
 - activity of **bananas** due to ⁴⁰*K*

$${}^{40}K
ightarrow {}^{40}Ca + \overline{
u}_e + e^-$$

 ${}^{40}K + e^-
ightarrow {}^{40}Ar +
u_e + \gamma$

- half–life
$$t_{\frac{1}{2}} = 1.2 \cdot 10^9 yr$$

- (inofficial) unit: **B**anana-**E**quivalent-**D**ose (**BED**) = 0.1 μSv^*

Decay processes – activity of human body

Is my natural radioactivity measurable & a threat to my rare event search?

- activity A of a medium-sized human body?
- my estimate for **activity** *A*:
 - $\mathbf{0} A \ll \mathbf{1} Bq$
 - $\mathbf{2} A = \mathbf{10} Bq$
 - $\mathbf{3} A = \mathbf{1000} \ Bq$
 - $\mathbf{4} A = \mathbf{10}^4 \ Bq$

Decay processes – activity of human body

huge noise rate* in *PMTs* of deep-sea- ν - telecopes

nuclide	activity (Bq)
H-3	25
Be-7	25
<i>C</i> – 14	3800
K-40	4200
Rb - 87	650
U - 238, 234	4
Pb - 210	60
Rn - 220	15
<i>Rn</i> – 220 daug.	30

*see lect. 6 p. 42