Exercise to the Lecture Astroparticle Physics KIT, Wintersemester 2023/24

Prof. G. Drexlin, J. Storek, S. Mohanty, N. Gutknecht

Lectures	Thur. 14:00 + Wed 14:00 (every 14 days), Phys-HS Nr. 3
Exercises	Wed 14:00 (alternating with lecture), Phys-HS Nr. 3
ILIAS	https://ilias.studium.kit.edu/goto.php?target=crs_2238561&client_id=produktiv

Sheet 5 – Due 24.1.2024

1) Development of extensive air showers

(2 + 1 + 1 = 4 points)

Electrons create extensive electromagnetic showers when going through the Earth's atmosphere. The dominating processes are bremsstrahlung and pair production. In a simplified and semiempirical model¹ it is assumed, that an electron with energy E_0 radiates a photon with energy $E_{\gamma} = E_0/2$ after a *splitting length* $d = \ln(2) X_0$. After the length d the photon converts into an electron and a positron with energies $E_{e^-} = E_{e^+} = E_0/4$ and the primary electron radiates another photon with $E_{\gamma} = E_0/4$. The shower develops in the same manner until the energy of the primary particle reaches a critical energy $E_{c,em}$. From now on the ionization dominates and the electrons are absorbed in the atmosphere.

- (a) What is the maximum number of particles N_{max} that is reached in the shower maximum? After what distance (in units of the radiation length X_0) will the shower maximum X_{max} be reached?
- (b) For electromagnetic air showers $E_{c,em}$ is approximately 100 MeV. What shower length is possible for electrons with a primary energy of 10^{12} and 10^{20} eV assuming that the maximum is reached after 2/3 of the shower length?
- (c) The atmospheric depth *x* (in g/cm²) scales exponentially with the height *h* above the sea level (in km): $x = X e^{-h/H}$, where H = 6,5 km and X = 1030 g/cm² is the total atmospheric depth. In which height do the electrons from b) develop their shower maximum for a given radiation length of $X_0 = 37$ g/cm²?

¹The basic concept of this model was developed in 1936 by Walter Heinrich Heitler (*1904, †1981) in Karlsruhe.

2) Inverse Compton scattering

(3 + 2 + 1 = 6 points)

An indirect method of the dark matter searches is the dark matter annihilation process. In this process a high energetic γ of energies between GeV an TeV are produced. One of the background processes in these studies is the inverse Compton scattering. In the inverse Compton effect a high energetic electron transfers energy to the photon.

The calculation is done in two steps: first the energy of the outgoing photon is derived in the rest frame of the electron and then it is transformed into the laboratory frame of the observer.

- (a) Derive energy of the outgoing photon $E_{\gamma}^{*'}$ in the rest frame of the electron and compare the result with the usual Compton scattering formula.
- (b) Use the Lorentz transformation to express the energy of the outgoing photon in the laboratory frame. Assume that the scattering angle of γ is close to 180° and that $E_{\gamma}^* \ll m_e$, i.e. $E_{\gamma}^{*\prime} \approx E_{\gamma}^*$, and derive the outgoing photon energy in laboratory frame using the incoming photon energy in the laboratory frame. (Suggested notation: asterisk for the electron's rest frame and no special sign for the laboratory frame.)
- (c) The result of the inverse Compton scattering can for relativistic velocities of the electron be approximated by formula $E'_{\gamma} = 4\gamma^2 E_{\gamma}$, where E_{γ} and E'_{γ} are the energies of the photon before and after the scattering, respectively, and γ is the Lorentz factor. Assume energy of the cosmic microwave background photons to be $E_{\gamma} = 7 \cdot 10^{-4}$ eV and calculate their energy after the inverse Compton scattering with a 1 TeV electron.

3) Direct DM searches

(5 points)

Write down a basic principle of the direct dark matter searches and think about a possible experimental realization. Focus on the spin independent interaction and design a suitable detector. Explain the detection technique, different background contributions and also background suppression methods.