

Astroteilchenphysik II: Gammastrahlung Vorlesung 10

Ralph Engel und Markus Roth Institut für Kernphysik Markus.Roth@kit.edu

Aktive Galaktische Kerne und Gammastrahlenblitze (GRBs)

Emissions- und Absorptionsprozesse

- Akkretionsscheibe und Gastorus
- Plasmastrahlen (Jets) und Knoten

Nachweis Schwarzer Löcher

- Keplerbahnen und Dopplereffekt
- Eddingtonschranke

Unmittelbare Umgebung von Schwarzen Löchern

- Akkretionsscheibe und Gastorus
- Plasmastrahlen (Jets) und Knoten

Eigenschaften von Gamma-Strahlen-Blitzen

- Entdeckung und erste Beobachtungen
- Energiespektren und Zeitvariabilität
- Verteilung im Universum
- Luminositätsabschätzungen

Interpretation und Physik von Gamma-Strahlen-Blitzen

- allgemeine Deutung der Beobachtungen
- Modell des relativistischen Feuerballs
- Plasmastrahlen und relativistische Effekte

Vorlesung: Termine

Diensta	ag		Donnerstag	
			23.04.2020	Vorlesung
			30.04.2020	Vorlesung
			07.05.2020	Vorlesung
12.05.20)20	Übung	14.05.2020	Vorlesung
			-	Feiertag
			28.05.2020	Vorlesung
			04.06.2020	Vorlesung
09.06.20)20	Übung	-	Feiertag
			18.06.2020	Vorlesung
23.06.20)20	Übung	25.06.2020	Ausgefallen
			02.07.2020	Vorlesung
07.07.20)20	Übung	09.07.2020	Vorlesung
			16.07.2020	Vorlesung
21.07.20)20	Übung	23.07.2020	Vorlesung

Vereinheitlichtes Modell: Aktive Galaktische Kerne

Superschwere schwarze Löcher: Dopplerverschiebung

Superschwere Schwarze Löcher: Luminosität

Eddington-Schranke

Akkretionsscheiben

Akkretionsrate und Luminosität

Plasmajets von Aktiven Galaktischen Kernen

3C 236 (d = 490 Mpc)

Cygnus A (d=190 Mpc)

10

Entstehung von Plasmajets

11

Modell von Blandford und Znajek, 1977

Superluminale Bewegung der Knoten in Jets

Teilchenbeschleunigung und Gamma-Strahlung

Modellbeschreibung der Gamma-Strahlung

Vereinigung von Schweren Löchern

- NGC 326
- Merging of Black Holes: Jets change their direction
- Jet-flip due to Spin-flip of the primary Black Hole

Gamma-Strahlen-Blitze (GRBs):

Historisches

- 1967 Entdeckung (Vela-Satelliten)
- I991 Compton Gamma Ray
 Observatory (CGRO), BATSE Detektor
- I997 Beppo-SAX-Satellit, anschließend HETE-2
- 2004 Swift-Satellit

AGILE-Satellit
 Fermi-Satellit (GLAST)
 MAGIC (HESS, VERITAS, ...)

Energiespektrum und Ausbruchsdauer

Richtungsverteilung

2704 BATSE Gamma-Ray Bursts

Erwartete Verteilung der GRBs

Fig. 19.4 The number of GRBs whose peak flux is brighter than flux *P*. A homogeneous distribution of bursts in space would imply a slope of -3/2 (see text) (Data from BATSE, figure from P. Meszaros (http://www2.astro.psu.edu/users/nnp/cosm.html))