Computational Photonics

Waves in stratified media



Matrix method for stratified (layered) media

* waves in homogeneous media
« single interface and then a stratified media
 deriving general expressions for transmission and reflection

 detailing how the dispersion relation of guided modes can

be extracted from the transmission coefficients



General idea

definition of a principal propagation direction
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Wave guides
E(z,y,z) = A(x, y)e”“z
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e multi layer waveguides

Nature 497, 470-474
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e Bragg waveguides




General idea

definition of a principal propagation direction

surface coatings

E(z,y,z) = A(x, y)é‘kz

® Bragg mirrors

e chirped mirrors for
dispersion compensation

Nature 497, 348-352
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¢ interferometers




General idea

O separating the domains in regions for which an analytical
solution for the wave equation exist = mode expansion
(free space => plane wave)

o expanding the field into a superposition of those modes

—> Adjusting the amplitudes of each mode, such that boundary conditions are met
(exact or approximately)

© modes should be adopted to the geometry

O assumptions/prerequisites - stationary
— layers in y-z-plane
— incident fields in x-z-plane

— full invariance in y-direction 5



Reflection / Transmission at a stack of layers

assumption: slab consist of an arbitrary number of layers (TE polarisation)

—> fields in homogenous space have to be a
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Separating the problem into 2 polarisations

—> continuity of the tangential electric and magnetic field

tangential fields (TE): Ey =F H,
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Polarisation independent formulation

— calculating the fields and their normal derivatives at 2z = d

—=> need to know the respective values at z = ()

—> equations are the same =—> simultaneous treatment
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Solving the initial value problem

F(Z) = Cleikfzz —+ Cge_ikfzz
o,

G(2) = ay &F(z) ok [Gebs Chenl i

need to know constants C'; and Cs

F(0) and G(0) are known = (Cjand C5

F(O) = (C1 + Oy G(O) — iOﬁfk’fz [Cl — CQ]




A single transfer matrix

I kv af;fz e

G(z) = —ayfkys,sin (kf.2) F(0) 4 cos (kf.2) G(0)

—> writing the equations in matrix form

61} =™ L6i0)
m(z) = {—kfz(;sf(fiflz(zlzfzz) kf:ggss(i;fiIZZZ)}

—> single transfer matrix 10



Transfer matrix of a stack

N
N-layers: (F) e my; (d;) (F) = M (
G di+di+..+dn=D 7];[ G 0

Incident and transmitted field
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Coupling an incident field

ansatz for the field in the substrate:

Fs (ZIZ‘, Z) = [Fleikszz e FRe_ikszz}

G (CU, Z) = io‘sks,zeikxglj [Fleikszz e FRe_ikszz}

ansatz for the field in the stratified media:
(known from matrix method)
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ansatz for the field in the cladding:

FC (CE, Z) - eikxxFTeikcz(z—D)

Collz 27— iou k., e ke ingthez (2= D)
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Coupling an incident field

(@), (3),

/ N

cladding fieldat z = [ substrate field atz = ()
Fr L P s Jir b bp
iackczFT M21 M22 io‘sksz (FI % FR)
—> two equations for the two unknown amplitudes
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R/T coefficients of the generalised variables

(&skszM22 - ackclel) —1 (M21 + askszackczM12)
(OéskszM22 + Oéckclel) + ( (M21_ Oésksz&ckcle2)
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R/T coetticients for TE polarisation

TE polarisation:  F =k =k, arp = 1

reflected field: E%;E = RTEE}FE

(kszMQQ = kclel) ) (M21 s kszkczMIQ)

Ryr — .
- (kszM22 = kclel) A (M21 e kszkcle2)
transmitted field: E%E — TTEE?E
ITg =
D
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and similar for TM polarisation: | = H = H, apy = — 15
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Calculating the efficiencies
lculating th fl
—=> calculating the energy flux ~ — const
—> perpendicular through a surface
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Flow chart of a program
—> assuming a stack of layers each having a certain width and a

relative permittivity

—> stack embedded in a substrate and a cladding medium and
illuminated with a plane wave of a specified wavelength,
polarisation, and angle of incidence

[

calculate the transfer matrix M

[

evaluate the coefficients F'r and Fr

[

evaluating the efficiencies
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Example: Bragg-mirror

—> series of alternating dielectric layers with a chosen thickness, such
that reflected light interferes constructively

dl
s
12 ds
thickness of each layer is chosen
I . /\()
(I’ Ny = —
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Example: Bragg-mirror
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Example: Bragg-mirror
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Efficiencies

Example: Bragg-mirror
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Example: Bragg-mirror
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Example: Bragg-mirror with detect

—> series of alternating dielectric layers with a chosen thickness, such
that reflected light interferes constructively

introducing a defect will couple
light evanescently through the
structure
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Reflectance/Transmittance
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Example: Bragg-mirror with defect

NaEh

08 | WY W

07f A

1.5

2" Vin um-



Amplitude,refractive index
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Example: Bragg-mirror with defect

I .
— Amplitude
Refractive index

25



Computational Photonics

Waves in stratified media

26



