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Guided modes in slab geometries



Calculating the modes of waveguides

guided modes are self-consistent solutions to Maxwell’s equations that 
propagate invariant (except a phase accumulation) in a principal 

propagation direction along which the geometry does not change

need to know dispersion relation (dependency of the propagation 
constant on the frequency) and field distributions

study those properties here for systems of increasing complexity

(film - scalar 2D - full vectorial 2D)
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no y dependency, phase rotation in z-direction

wave propagation without diffraction

miniaturisation of optics

optical signal communication

Modes in a layer system
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principal mechanism: total internal reflection

core

substrate

cladding

plane wave in propagation direction: eikzz

1

evanescent wave in substrate and cladding: k2
z >

⇥2

c2
max {�s,c(⇥)}

1

oscillating solution in core: A sin(kfxx) + B cos(kfxx)

1

k2
z <

⇥2

c2
max {�i(⇥)}

1

How can waves be bound?
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singularities of R and T

guided waves are resonances of the system

singularities:

�

c
max {ns,c(�)} < kz <

�

c
max {ni(�)}
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How to find their dispersion relation

the problem of finding a guided mode is reduced to finding a root
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field in substrate/superstrate is evanescent

Reduced to the problem of finding a root
D
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How do the modes look like
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How do the modes look like
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General properties of guided 
modes



u and u´ converge to zero, physical fields have finite energy 

solutions for u and u´ must be continuous and bound; second derivative 
of u must be finite due to the finite refractive index discontinuities

these properties determine the eigenvalue problem

discrete solutions are called modes

Characteristics of the mode solution
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Orthogonality and normalisation
consider two solutions⇥

4? + k2(x, y,!)� �2
a

⇤
ua(x, y,!) = 0

⇥
4? + k2(x, y,!)� �2

b

⇤
ub(x, y,!) = 0


@2

@x2
+

@2

@y2

�
u(x, y,!) +

⇥
k2(x, y,!)� �2(!)

⇤
u(x, y,!) = 0



Orthogonality and normalisation
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multiplying each equation with the opposite mode and subtracting both equations 

�
�2
a � �2

b

�
uaub = ub4?ua � ua4?ub

integration over the mode area

�
�2
a � �2

b

� Z

A1
uaubdA =

Z

A1
(ub4?ua � ua4?ub) dA

rhs is transformed using Green’s second identity to a line integral that actually 
vanishes since the fields at infinity are supposed to be decayed gives

�
�2
a � �2

b

� Z

A1
uaubdA = 0



modes are orthogonal:

�

A
uaubdA = �ab

1

modes are normalised:

�

A
u2dA = 1

1

Characteristics of the mode solution
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fulfil this condition for different propagation constants we require  
Z

A1
uaubdA = �a,b



phase velocity:

(velocity of the phase front)

vP =
⌅

�
=

2⇤c

⇥�

1

group velocity:

(velocity of the energy)
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Derived quantities of modes

can conveniently be calculated with the following method 
(using wavelengths as arguments and dropping space coordinates)

⇥
4? + k20(�)✏(�)� �2(�)

⇤
u(�) = 0

calculation at two different wavelengths 

⇥
4? + k20(�

0)✏(�0)� �2(�0)
⇤
u(�0) = 0

vg =
@!

@�
= �2⇡c

�2

@�

@�
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Derived quantities of modes

same as before; multiplication with the other mode and subtracting

again, integrating over the cross section and using Green’s second identity 
to show that the rhs is zero gives

⇥
�2(�)� �2(�0)

⇤

�� �0

Z

A1
u(�)u(�0)dA =

4⇡2

�� �0

Z

A1

✓
✏(�)

�2
� ✏(�0)

�02

◆
u(�)u(�0)dA

considering now the limiting case of 

1

�(�)

@�(�)

@�

Z

A1
u2(�)dA = 4⇡2

Z

A1
u2(�)

@

@�

✓
✏(�)

�2

◆
dA

� ! �0

this expression for                 can be inserted into the original equation@�/@�

�(�)

�⇥
�2(�)� �2(�0)

⇤
�
⇥
k20(�)✏(�)� k20(�

0)✏(�0)
⇤ 

u(�)u(�0) = u(�0)4?u(�)� u(�)4?u(�
0) (1)

Z
d3rJ!(r) / J!(p = 0)

2

4
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a!10
a!1�1

3

5 ⇡ � 1

⇡
p
3

Z
d3rJ!(r)

� 1

⇡
p
3
k2

Z
d3r

1
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�⇥
r
†
J!(r)

⇤
r� 2r2J!(r)
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b!10
b!1�1
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3
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Z
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3

Z
d3rJ!(r)
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b!11
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b!1�1

3

5 = �
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3

2⇡

Z
d3r [r̂⇥ J!(r)] j1(kr)

2

4
a!11
a!10
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3

5 = � 1

⇡
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3

Z
d3rJ!(r)j0(kr)

� 1

2⇡
p
3

Z
d3r

�
3
⇥
r̂
†
J!(r)

⇤
r̂� J!(r)

 
j2(kr)(2)

r
⇡

2
a!
jm

= (�i)j�1
m̄=jX

m̄=�j

Z
dp̂Z†

jm
(p̂)Yj�1m̄ (p̂)

Z
d3rJ!(r)Y

⇤
j�1m̄ (r̂) jj�1(kr)

(�i)j+1
m̄=jX

m̄=�j

Z
dp̂Z†
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Z
d3rJ!(r)Y

⇤
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⇡

2
b!
jm
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Z
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jm
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Z
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⇤
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group velocity dispersion:

(measure for the spread of a pulse) D =

⇥ 1
vg

⇥�

1
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Derived quantities of modes

group velocity:

(velocity of the energy)

vg = �c�(�)

�22⇡

R
A1 u2(�)dA

R
A1 u2(�) @

@�

⇣
✏(�)
�2

⌘
dA
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General properties of guided 
modes
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Finite difference to solve guided 
eigenmodes in scalar 

approximation



Finite-difference method for waveguide modes
starting from the wave equation


r⇥r⇥E(r,!) =
!2

c2
✏(r,!)E(r,!)

neglecting the divergence of the electric field

r ·D(r,!) = 0 ✏0r · [✏(r,!)E(r,!)] ⇡ 0

we obtain the Helmholtz equation

4E(r,!) +
!2

c2
✏(r,!)E(r,!) = 0

neglecting the vectorial properties              scalar Helmholtz equation

4v(r,!) + k2(r,!)v(r,!) = 0 k2(r,!) =
!2

c2
✏(r,!)with
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Stationary solutions of the scalar Helmholtz equation

search for the stationary states (modes) of the problem with ✏(r,!) = ✏(x, y,!)

eigenvalue equation for the propagation constant

v(r,!) = u(x, y,!)ei�(!)z

�(!)

4?u(x, y,!) +
⇥
k2(x, y,!)� �2(!)

⇤
u(x, y,!) = 0


@2

@x2
+

@2

@y2

�
u(x, y,!) +

⇥
k2(x, y,!)� �2(!)

⇤
u(x, y,!) = 0
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eigenvalue solved by a finite difference scheme for the transversal 
Laplace operator

@2u(x, y,!)

@x2
+

@2u(x, y,!)

@y2



Discretisation of the Laplace operator

@2u(x, y,!)

@x2

����
xj ,yk

⇡ u(xj+1, yk,!)� 2u(xk, yk,!) + u(xj�1, yk,!)

h2

j

@2u(x, y,!)

@y2

����
xj ,yk

⇡
u(xj,yk+1 ,!)� 2u(xk, yk,!) + u(xj,yk�1 ,!)

h2

j



Discretisation of the Laplace operator

linear equation for each variable

4(x,y)u ! (4u)j,k
quadratic area of size a x a

equidistant discretisation of the area with N x N points

assuming:
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linear equation for each variable ,j kU  

 
x quadratic area of size  a x a 
x equidistant discretization of the area with N x N points 

 
example: 

 

2.2 Matrix notation of the eigenvalue equation 
,j kU : originally 2D variable depending on x-direction (j) and y-direction (k) 

Î unfolding of ,j kU  into a 1D vector 

Î for each vector component ,j kU  results an individual linear equation 

matrix dimension: number variables in x times number variables in y 
 

d2U
dx2

xj,yk

| U(xj+1,yk) - 2 U(xj, yk) + U(xj-1, yk)
h2

d2U
dy2

xj,yk

| U(xj,yk+1) - 2 U(xj, yk) + U(xj, yk-1)
h2

d2U
dy2

xj,yk

| - 4 Uj,k + Uj+1,k +  Uj-1,k + Uj,k+1 + U j,k-1

h2
d2U
dx2 + =( ' U )j,k

2 2( , , ) ( ) ( , ) 0k x y u x yª º� Z �E Z  ¬ ¼

'(x,y) U o (' U )j,k

a

N

.

.

1
1 2 3 N

- 4 U2,3 + U3,3 +  U1,3 + U2,4 +  U2,2

h2( ' U ) 2,3 =(4u)2,3 =
�4u2,3 + u3,3 + u1,3 + u2,4 + u2,2

h2
e.g.
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u(xj , yk,!) = uj,k



Matrix notation of the eigenvalue equation
uj,k is originally a 2D variable depending on x-direction (j) and y-direction (k)

unfolding of           into a 1D vectoruj,k

each vector component           results in an individual linear equationuj,k

matrix dimension: number variables in x times number variables in yComputational Photonics, Abbe School of Photonics, FSU Jena, Prof. T. Pertsch, 19.06.2012 24 

 
 
Matrix equation: schematic picture 

 

 
matrix: small number of non-zero values – ‚sparse matrix‘ 

N

.

.

1
1             .  .           N

j

k

U|w:G = UG 

.

.

= 0

U j,k

matrix

U 2,2

=

U 3,2

U N-1,2
U 2,3

 

U 3,3 0

U N-2,2

U 4,3

U N-2,3

 

U N-1,3
U 2,4
U 3,4
U 4,4

-4  1  0  0 .. 0  1 0  0 0  0    
1  -4  1  0 .. 0  0  1  0 0  0   

1  0  0  0 .. 0 -4 1 0  0  0   0 1 0 0 0   
0  1  0  0 .. 0 1 -4 1  0  0   0 0 1 0 0  
0  0  1  0 .. 0 0 1 -4  1  0   0 0 0 1 0  

 
discrete  Laplace operator

N

.
k
.

1
1           j          N

x iterates first

accounts for the 1D – problem (tridiagonal matrix)

occures for 2D problems
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Matrix notation of the eigenvalue equation
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Matrix equation: schematic picture 

 

 
matrix: small number of non-zero values – ‚sparse matrix‘ 

N

.

.

1
1             .  .           N

j

k

U|w:G = UG 

.

.

= 0

U j,k

matrix

U 2,2

=

U 3,2

U N-1,2
U 2,3

 

U 3,3 0

U N-2,2

U 4,3

U N-2,3

 

U N-1,3
U 2,4
U 3,4
U 4,4

-4  1  0  0 .. 0  1 0  0 0  0    
1  -4  1  0 .. 0  0  1  0 0  0   

1  0  0  0 .. 0 -4 1 0  0  0   0 1 0 0 0   
0  1  0  0 .. 0 1 -4 1  0  0   0 0 1 0 0  
0  0  1  0 .. 0 0 1 -4  1  0   0 0 0 1 0  

 
discrete  Laplace operator

N

.
k
.

1
1           j          N

x iterates first

accounts for the 1D – problem (tridiagonal matrix)

occures for 2D problems
accounts for the 1D – problem (tridiagonal matrix)

occurs for 2D problems

matrix: small number of non-zero values – ‚sparse matrix‘
24



Boundary conditions
finite spatial grid to reflect an infinitely extended space

suitable truncation necessary

boundary conditions less critical since guided 
modes shall have a sufficiently decayed field

Computational Photonics, Abbe School of Photonics, FSU Jena, Prof. T. Pertsch, 19.06.2012 25 

2.3 Boundary conditions 

 
Example: Metal boundaries (Metal tube with boundaries iw:  

                                                     .

 

a

N

.

.

1

- boundaries of the grid ?

- 4 U1,3 + U2,3 +  U0,3 + U1,4 +  U1,2

h2( ' U ) 1,3 =

example:

1 20 outside the grid

� boundary conditions
(compare with  theory of 
partial differential equation)

w:G 

U|w:i = Ui = const

N

.

.

1
1           .  .            N

grid with metal boundaries (U|w:G = 0 )

2 d j d N-1,   2 d k d N-1

� (N-2) u (N-2) – equations
� (N-2) u (N-2) – unknown

- 4 Uj,k + Uj+1,k +  Uj-1,k + Uj,k+1 +  Uj,k-1

h2=( ' U )j,k = 0

0 1 2

Boundaries of the grid? 

Necessary to compute, e.g.

(4u)1,3 =
�4u1,3 + u2,3 + u0,3 + u1,4 + u1,2

h2

outside the grid


boundary conditions 

(compare with theory of partial differential equation)
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Boundary conditions

example: Metal boundaries (Metal tube with boundaries         )@⌦i
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2.3 Boundary conditions 

 
Example: Metal boundaries (Metal tube with boundaries iw:  

                                                     .

 

a

N

.

.

1

- boundaries of the grid ?

- 4 U1,3 + U2,3 +  U0,3 + U1,4 +  U1,2

h2( ' U ) 1,3 =

example:

1 20 outside the grid

� boundary conditions
(compare with  theory of 
partial differential equation)

w:G 

U|w:i = Ui = const

N

.

.

1
1           .  .            N

grid with metal boundaries (U|w:G = 0 )

2 d j d N-1,   2 d k d N-1

� (N-2) u (N-2) – equations
� (N-2) u (N-2) – unknown

- 4 Uj,k + Uj+1,k +  Uj-1,k + Uj,k+1 +  Uj,k-1

h2=( ' U )j,k = 0

field inside a perfectly conducting metal vanishes

reduced number of unknowns and equations


(N� 2)⇥ (N� 2)
26



Final solution

27


@2

@x2
+

@2

@y2
+ k2(x, y,!)

�
u(x, y,!) = �(!)2u(x, y,!)

solvable with eigenvalue solver of preference

A is the sum of a matrix encoding the Laplace operator and a 
diagonal matrix containing information on the material at size j,k

h
(4u)j,k + k2j,k

i
uj,k = �2uj,k

Au = �2u
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polarization control. We use a spatial light modulator (SLM) to produce the radial modes before
creating vector-vortex versions by geometric phase control [20]. We introduce a composite di-
agnostic in the form of a vector mode decomposition that is mode specific[3], as well as a new
tomography approach that returns a quantitative measure of the degree of non-separability or
”vectorness” of these modes [21]. We use our set-up to create modes for a step-index fiber with
known mode coupling [22] and demonstrate that we are able to quantify the propagation of the
natural modes of these fibers for the first time. We quantify the effect of fiber perturbations on
vector modes, which we demonstrate experimentally. This approach will be useful in studies
of MDM for increased bandwidth as well as in transport of high-dimensional quantum states
down fibers.

2. Concept and implementation

The full vector wave equation for a step-index fiber is given by [23]

{!2
t +n2k2}!et +!t{!et ·!t

[
ln(n2)

]
}= β 2!et , (1)

where n is the refractive index of the fiber, k = 2π/λ is the wavevector, !et is the transverse
electric field and β is the propagation constant of each vector mode solution. From Eq. (1),
the first four higher-order vector solutions may be described as: transverse electric (TE01),
transverse magnetic (TM01), hybrid electric odd (HEodd21 ) and even (HEeven21 ). The two indices
represent the number of half-wave patterns across the width and the height of the waveguide,
respectively. The whole mode group is nearly degenerate, where the two HE21 modes share the
exact propagation constant, as shown in Fig. 1. As such, these modes are likely to couple during
propagation within step-index fibers. Due to the cylindrical symmetry and step-like constant

Fig. 1. Schematic of the step-index fiber and its modes; (a) structure of the fiber composed
of a protective coating, cladding and core where the light is guided; schematic of the mode
patterns and spectrum for (b) the scalar approximation and (c) the natural vector modes
with partialy resolved degeneracy of the first higher order mode group.

refractive index distribution of these fibers, the radial field distribution is given by Bessel-type
functions:

E"p(r) =

{
J|"|

( u"pr
a
)
/J|"|

(
u"p

)
for r < a

K|"|
(w"pr

a
)
/K|"|

(
w"p

)
for r ≥ a

(2)

Here, a is the core radius, J" is the "th order Bessel function, K" is the "th order modified
Bessel function with u"p and w"p are normalized propagation constants. In our experiment, we
made use of a 30 mm long step-index fiber with a core radius a = 15 µm and a numerical
aperture NA= 0.08. For ease of alignment, we used a wavelength of 633 nm resulting in a total
of 76 possible modes that can exist in the fiber.
Owing to the radial distribution of the fiber, it is important to match the input field to the

corresponding fiber mode group. As such, we exploit both the dynamic and geometric phase to

#240066 Received 30 Apr 2015; revised 11 Jun 2015; accepted 13 Jun 2015; published 24 Jun 2015 
© 2015 OSA 29 Jun 2015 | Vol. 23, No. 13 | DOI:10.1364/OE.23.017330 | OPTICS EXPRESS 17332 

polarization control. We use a spatial light modulator (SLM) to produce the radial modes before
creating vector-vortex versions by geometric phase control [20]. We introduce a composite di-
agnostic in the form of a vector mode decomposition that is mode specific[3], as well as a new
tomography approach that returns a quantitative measure of the degree of non-separability or
”vectorness” of these modes [21]. We use our set-up to create modes for a step-index fiber with
known mode coupling [22] and demonstrate that we are able to quantify the propagation of the
natural modes of these fibers for the first time. We quantify the effect of fiber perturbations on
vector modes, which we demonstrate experimentally. This approach will be useful in studies
of MDM for increased bandwidth as well as in transport of high-dimensional quantum states
down fibers.

2. Concept and implementation

The full vector wave equation for a step-index fiber is given by [23]

{!2
t +n2k2}!et +!t{!et ·!t

[
ln(n2)

]
}= β 2!et , (1)

where n is the refractive index of the fiber, k = 2π/λ is the wavevector, !et is the transverse
electric field and β is the propagation constant of each vector mode solution. From Eq. (1),
the first four higher-order vector solutions may be described as: transverse electric (TE01),
transverse magnetic (TM01), hybrid electric odd (HEodd21 ) and even (HEeven21 ). The two indices
represent the number of half-wave patterns across the width and the height of the waveguide,
respectively. The whole mode group is nearly degenerate, where the two HE21 modes share the
exact propagation constant, as shown in Fig. 1. As such, these modes are likely to couple during
propagation within step-index fibers. Due to the cylindrical symmetry and step-like constant

Fig. 1. Schematic of the step-index fiber and its modes; (a) structure of the fiber composed
of a protective coating, cladding and core where the light is guided; schematic of the mode
patterns and spectrum for (b) the scalar approximation and (c) the natural vector modes
with partialy resolved degeneracy of the first higher order mode group.

refractive index distribution of these fibers, the radial field distribution is given by Bessel-type
functions:

E"p(r) =
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Finite difference to solve guided 
eigenmodes in scalar 

approximation


