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Guided modes in slab geometries



Calculating the modes of waveguides

guided modes are self-consistent solutions to Maxwell’s equations that
propagate invariant (except a phase accumulation) in a principal

propagation direction along which the geometry does not change

need to know dispersion relation (dependency of the propagation

constant on the frequency) and field distributions

study those properties here for systems of increasing complexity
(film - scalar 2D - full vectorial 2D)



Modes in a layer system

© no y dependency, phase rotation in z-direction

—> wave propagation without diffraction
—> miniaturisation of optics

—> optical signal communication
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How can waves be bound?
—> principal mechanism: total internal reflection
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o plane wave in propagation direction: &
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O evanescent wave in substrate and cladding: kz > C_2maX {es,c(w)}

0 oscillating solution in core: A Sln(kfxil?) + B COS(]CfoU)
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How to find their dispersion relation

%max {ns,c(w)} <k, < %max {ni(w)}

guided waves are resonances of the system

—> singularities of Rand T
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the problem of finding a guided mode is reduced to finding a root :



Denominator

ksx = ius’ kcx = iMC’ Ms,c = \/kz
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How do the modes look like
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How do the modes look like
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Characteristics of the mode solution

[ @5 7l 0a

5+ s | U ) + [z, 0,0) - (0] () =0

o u and u’ converge to zero, physical fields have finite energy

o solutions for u and u” must be continuous and bound; second derivative
of u must be finite due to the finite refractive index discontinuities

=—> these properties determine the eigenvalue problem

—> discrete solutions are called modes

Orthogonality and normalisation

consider two solutions

AL+ R (2, y,w) = 6] ua(z, y,w) =0
:AJ_ il /{‘2(37,:(/,60)—52] ub(xvyaw) U 11




Orthogonality and normalisation

multiplying each equation with the opposite mode and subtracting both equations

(B2 — By) uaup = upA ) U — ugdN | uy

integration over the mode area

(82 - B7) /

UgupdA = / (up A ug — ug N1 up) dA
Aoco Aoco

rhs is transformed using Green’s second identity to a line integral that actually
vanishes since the fields at infinity are supposed to be decayed gives

(62 — 52) / U updA = 0

Aoco
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Characteristics of the mode solution

fulfil this condition for different propagation constants we require

uaubdA — 5a,,b
A oo

o modes are orthogonal: / uaubdA — 5ab
A

o modes are normalised: / quA — ]
A
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Derived guantities of modes

o Phase velocity: VD — w _ 2me
(velocity of the phase front) P 5} AD
group velocity: V. — a_w _ 2mc ON

© (velocity of the energy) S 85 A2 86

can conveniently be calculated with the following method
(using wavelengths as arguments and dropping space coordinates)

calculation at two different wavelengths

AL+ kR2(Ve(h) = BN u(A) = 0
AL+ RROV)eN) = B2V)] u(N) =0
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Derived guantities of modes
same as before; multiplication with the other mode and subtracting

{[82(N) = B2(N)] = [kg(N)e(N) = kg(N)e(W)] } u(Nu(X) = u(N)A Lu(X) — u(A)A Lu(X)

again, integrating over the cross section and using Green's second identity
to show that the rhs is zero gives

8 (Aj:f, (V)] /A u(N)u(N)dA = ;‘f N /A (GS) - E(A?;))umu(x’)dA

considering now the limiting case of A — \’

B(N) ag—(ﬁ)/m u?(A)dA = 47° /AOO u2()\)5% (ei—z)> dA

this expression for 8)\/85 can be inserted into the original equation s



Derived guantities of modes

cB(N) [ 4o u?(N)dA

group velocity: Vg =

)2
° (velocity of the energy) A“2m ono u?(A) 88)\ (Gf\’;)) dA
Y . oL
o group velocity dispersion: Y,
(measure for the spread of a pulse) D = O\
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Finite-ditference method for waveguide modes

starting from the wave equation

w2

VXV xE(r,w)=—¢r,wE(r,w)
C

neglecting the divergence of the electric field

V- -D(r,w)=0 eV - le(r,w)E(r,w)] =~ 0

we obtain the Helmholtz equation

w2

ANE(r,w) + C—ze(r,w)E(r, w) =20

neglecting the vectorial properties ==> scalar Helmholtz equation

w2

Av(r,w) + k2 (r, w)v(r,w) = 0 with k2(r,w) = = ¢(r,w)

c2
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Stationary solutions of the scalar Helmholtz equation

search for the stationary states (modes) of the problem with €(r,w) = €(x, y, w)
o(r,w) = u(z,y,w)eP«)?
eigenvalue equation for the propagation constant 3(w)
A u(z,y,w) + [ (z,y,w) — B2 (w)] u(z,y,w) =0

[% 2 88—2/2] u<$>yaw) s [kQ(x,y,w) = 62((’0)] u(x,y,w) =

eigenvalue solved by a finite difference scheme for the transversal
Laplace operator

0%u(x,y,w) - 0%u(z,y,w)
ol 0y?
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Discretisation of the Laplace operator

‘(xj,k+1 Uj ke1)
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Discretisation of the Laplace operator
linear equation for each variable u(x;, Yr, w) = U, &
A(m,y)u — (Au)j,k

assuming: —> quadratic area of size a x a

—> equidistant discretisation of the area with N x N points

s N

Eoumal

2 3 N

A _ —dug 3t uzz+ Uizt uz g+ Uz
eg.  (Au)ys= ™ .



Matrix notation of the eigenvalue equation

U,j’k is originally a 2D variable depending on x-direction (j) and y-direction (k)

—> unfolding of u; i into a 1D vector

=> each vector component u; j results in an individual linear equation

—> matrix dimension: number variables in x times number variables in y

o \,1\

K matrix 1




Matrix notation of the eigenvalue equation

» discrete Laplace operator

\

[-41.00..0 %0000
.#4.4.0.0 0700 0
1.000. 9% %000 04000
10100.04%4 %00 00400
0010.00%%4™4 0 00040

\

J

occurs for 2D problems

1

j N
X iterates first

accounts for the 1D — problem (tridiagonal matrix)

matrix: small number of non-zero values — ,sparse matrix’
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Boundary conditions
finite spatial grid to reflect an infinitely extended space
—> suitable truncation necessary

—> boundary conditions less critical since guided
modes shall have a sufficiently decayed field

N
Boundaries of the grid?
Necessary to compute, e.g.
| —4uq 3 + U3 Hup 3+ ura + up 2
| ' (Au)173 — B2
1 I

outside the grid

== boundary conditions
(compare with theory of partial differential equation) 25



Boundary conditions

example: Metal boundaries (Metal tube with boundaries 92, )

000

tield inside a perfectly conducting metal vanishes
—> reduced number of unknowns and equations

(N—-2) x (N—2) .



|

Final solution

(92 82 2 2
ozt oz T7 (ﬂf,y,w)] u(z,y,w) = fw)’u(z,y,w)

[(Au)j,k i kak} Gl = 52“3',76

Au = B4y

A is the sum of a matrix encoding the Laplace operator and a
diagonal matrix containing information on the material at size jk

solvable with eigenvalue solver of preference
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Example

Coating Cladding  Core

n(r)

Optics Express Vol. 23, Issue 13, pp. 17330-17336 (2015)
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