Computational Photonics

Finite-Difference Time-Domain



Relation between frequency and time domain

O the frequency spectrum used for the illumination is given by the
Fourier-transformation of the time dependent incident field

EInc A EInc N

O with a single calculation we can calculate the entire frequency response,

detecting the temporal evolution of the field behind a structure and FT
(N, = total number of time steps)
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Relation between frequency and time domain

O the frequency spectrum used for the illumination is given by the
Fourier-transformation of the time dependent incident field

EInc A EInc N

O with a single calculation we can calculate the entire frequency response,

detecting the temporal evolution of the field behind a structure and FT
(N, = total number of time steps)

— for a high resolution in the wavelength domain, we have to
record the temporal evolution of the field for an excess in time

kind of disadvantage 3



Transmission

-xample of a grating wave guide coupler
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-xample of a grating wave guide coupler

Amplitude at A=0.1649um Amplitude at A=0.1768um
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Inclusion of other materials

O FDTD is not directly applicable for materials with € < 1

(e.g. metals)

O material properties depend strongly on the wavelength (dispersion)

O nonlinear properties of interest (instantaneous or non-instantaneous)

O great diversity of approaches, but they require usually all the
simulation of an additional quantity

O so far we have taken into account E and H

—> J Current density P Polarisation D Displacement



FDTD for metals
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FDTD for metals
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FDTD for Lorentz-materials

O assuming a 2D geometry (y-z-plane) with TM polarisation

E=E.x P=Px

Lorentz dispersion

(frequency domain) B - B

(the same as Drude-model but
resonance frequency is not at 0)

Fourier-
transformation

Lorentz dispersion g JP,

| | 2 = 2
(time domain) 9 12 g i e ' wOPx o GprXLEx

(R.W. Ziolkowski et al., JOSA A, Vol. 16, No. 4, 980) 10



FDT

D for nonlinear/nondispersive materials

O going back to Maxwell’s equations
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Instantaneous!

non-Linearr D = egE + P

P = €0 _X(l)E 4 X(Q)EZ 1 X(S)Eg 4. ._
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FDT

O example of an instantaneous Kerr X

D for nonlinear/nondispersive materials
- (3)

nonlinearity

) = E()EE € n? nonlinear refractive

index depends on the

2\ 2
(TL() T N2 |E| ) square of the E-Field

2 2
= Ny -+ 2n0n2|E| (TLQ < TL())
o D solution by a Newton
e n(Z) i 2n0n2|E|2 iterative procedure
(or direct)
—> straight forward applicable to instantaneous )%(2) media
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Boundary conditions

O problems appear if the tields at the boundary have to be evaluated
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- (finite) computational
domain

O

O

for keeping the discretized mesh treatable
on a computer, we have to limit its size

but

for a proper determination of the tield
components that are positioned directly at
the boundary of the computational domain,
we need actually information about field
components outside

choosing proper
—> J

boundary conditions
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Boundary conditions

O easiest boundary conditions: perfectly conducting material (E or H)

field cannot penetrate

— the structure
I —
I
I

setting the field values outside

the structure equal to zero
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Boundary conditions

O Floguet-Bloch boundaries for periodic objects (gratings, photonic crystals)

A O Incident plane wave (arbitrary propagation direction)
: | I | I ! I I : EInc x eikmmeikyyeikzze—iwt
‘ I I I I I ‘ O Floquet-Bloch boundaries in the frequency domain
' | I I I I : (in x-direction)

w E(CE—I—Ax,y,Z,t) :E(x7y727t) 6ik$Ax

H E T B O amplitude of the field displaced by one unit cell is
’ ’ identical, necessary since individual unit cells of a
(physical grid) oeriodic structure is indistinguishable

O only the phase changes by what is known as the

Bloch phase
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Boundary conditions
O Floguet-Bloch boundaries for calculating the band structure of a PC
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— periodic boundary with a particular k »and ky
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Boundary conditions

O launching an arbitrary tield distribution and recording the evolving
pattern on some discrete points in the space

%0 05 1 15 2 25 3
tins %10
initial field distribution time evolution of the field

(e =13, R = 0.3a)
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Boundary conditions

O launching an arbitrary tield distribution and recording the evolving

pattern on some discrete points in the space

time evolution of the field

(e =13, R = 0.3a)
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time evolution of the field
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Boundary conditions

O all the frequencies which do not satisfy the periodic boundaries are
annihilated and only the modes that are allowed to propagate persist

107 ! ! ! ! ! 3

FFT(E)
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spectra obtained as a FFT time evolution of the field

(e =13, R = 0.3a)
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Boundary conditions

O scanning the k-space and tracing the frequencies that persist as modes
delivers the band structure via FDTD

10° ? ! ? ! :
w
-
LL
LL

0 | | |

Y9 02 04 06 08 1

®al/2xC
spectra obtained as a FFT band structure computation

(e =13, R = 0.3a)
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Boundary conditions

O neglecting the vectorial aspect: each field component obeys a scalar
wave equation

o°f 0°f ©° | 07
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Boundary conditions

O for propagation in the +/- x-direction the operators are written as

L_ — a\ — C_l(‘}, l — S'z ——> wave propagating in the —x-direction

/Y

+ \ -a_l \ ‘2 [ . ol I
L — a\ + C a, \/l . S ——> wave propagating in the +x-direction

§2=| 2 j+ ';':'| | L_f e O

Engquist-Madja exact ABC
(Mathematics of Computation, Vol. 31, 629, 1977)
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O direct implementation of operator not possible, but the
sguare-root can be expanded as a Taylor-series 22



Boundary conditions

(1_52)1/2 :®—%S2 +O(S4)

first order approximation

nearly plane wave propagating in x-direction

L f=0,f—c 0, f =0
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Boundary conditions

Second order approximation
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Boundary conditions

O writing the differential operators as finite differences
(G. Mur, IEEE Trans. Electromagnetic Compatibility, Vol. 32, 377, 1981)

O discretising the operator a half spatial step in front of the boundary
(example of the boundary at x=0)

" rn+l n+1 n—1 n—1
1 [ Jiix—Joix Jiix—Joix

1/2.j.k pINA AX AX

-2
G.Tf

O averaging the second time derivatives at x=0 and x=Ax

1 1 1 °
1| fanij, 2 fo ;k+f{];ﬁ., flu+ zfljf{—l_fl”

2 | Ne N

O same holds for the second time derivatives in y and z direction o5




Boundary conditions

O inserting all those difference scheme leads to
n+1 n—1 n—+1 n—1
ok = dogp T Ellngp blogr) RISt Jo 00 b
el 20 e T = e e

At e e e A e

cAt — Azx I 2Ax (cAt)*Ax

— — k‘ —
k1 cA\t + Ax : cAt + Ax 3y 2Ay? (:E‘At -+ A$)

O example for boundary x=0, similar equations for other boundaries

O fields have to be stored for 2 different time steps 26



Boundary conditions

O simplification by using only the first order Taylor approximation
(skipping the derivatives along the y and z directions)

+1 = +1 =
Gak - o L e g PR R )

O only the fields components that are evaluated at this (most outer)

boundary have to be updated with this equation
(the tangential components of the E-field e.g. at the boundary x=0)

o reflection coefficients are in the order of 107

O easy to implement 27
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