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Relation between frequency and time domain

the frequency spectrum used for the illumination is given by the 
Fourier-transformation of the time dependent incident field
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with a single calculation we can calculate the entire frequency response, 
detecting the temporal evolution of the field behind a structure and FT 
(Nt = total number of time steps)
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Relation between frequency and time domain

for a high resolution in the wavelength domain, we have to 
record the temporal evolution of the field for an excess in time 

kind of disadvantage
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with a single calculation we can calculate the entire frequency response, 
detecting the temporal evolution of the field behind a structure and FT 
(Nt = total number of time steps)

the frequency spectrum used for the illumination is given by the 
Fourier-transformation of the time dependent incident field



Example of a grating wave guide coupler

transmission function of a PC wave guide 
(n1=1.58, n2=1.87,d1=d2=165nm, TE)

transmission?
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Example of a grating wave guide coupler
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transmission function of a PC wave guide 
(n1=1.58, n2=1.87,d1=d2=165nm, TE)

transmission?
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Example of a grating wave guide coupler
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dips are waveguide resonances 
excited if the momentum provided 

by the grating matches the 
propagation constant of a 

waveguide mode
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Inclusion of other materials

FDTD is not directly applicable for materials with  
(e.g. metals)
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material properties depend strongly on the wavelength (dispersion) 

nonlinear properties of interest (instantaneous or non-instantaneous)

great diversity of approaches, but they require usually all the 
simulation of an additional quantity    

so far we have taken into account     and

Current density Polarisation Displacement
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FDTD for metals
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scattering cross section of a 
circular silver cylinder   

(r=25nm, TM)

FDTD for metals
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FDTD for Lorentz-materials
assuming a 2D geometry (y-z-plane) with TM polarisation

and three-dimensional PBG studies, which are currently
in progress. The FDTD approach allows one to obtain
the frequency response of finite PBG structures over a
wide set of frequencies in a single simulation as well as a
complete visualization of the time evolution of all the as-
sociated field and material quantities. Since we are also
currently studying nanostructure waveguides formed
from defects in finite-sized PBG’s, the FDTD approach
permits us to investigate the temporal evolution of the
propagation of the associated electromagnetic guided
waves.

2. FINITE-DIFFERENCE TIME-DOMAIN
SIMULATOR
We assume that the PBG structure varies only along the z
axis and is uniform on any x–y plane. Thus all the elec-
tromagnetic waves are planar, with the electric and mag-
netic fields being constant in any x–y plane and the di-
rection of propagation being along the z axis. We take
these plane waves to be x polarized (electric field along
the x axis and magnetic field along the y axis) throughout.

A. Lorentz Model
To include dispersion in the materials, we introduce the
Lorentz model for the polarization field P. Since the
electric field has the form E ⌅ Exx̂, the polarization field
has the form P ⌅ Pxx̂ and satisfies the equation

⌃2Px

⌃ t2 ⌃ ⇥
⌃Px

⌃ t
⌃ �0

2Px ⌅ ⌅0�p
2↵LEx , (1)

where ⇥ is the damping coefficient, �0 is the resonance
frequency, �p is the plasma frequency, and ↵L is related
to the dc value of the electric susceptibility ↵dc as ↵dc
⌅ (�p

2↵L)/�0
2. The associated frequency domain expres-

sion

Px,� ⌅
⌅0�p

2↵L

�0
2 ⇤ �2 ⌃ j�⇥

Ex,� (2)

is obtained by Fourier transform of Eq. (1). Figure 1 in-
dicates the relation between the frequency and the refrac-
tive index n(�) ⌅  1 ⌃ ↵(�)�1/2, where the frequency-
domain susceptibility ↵(�) ⌅ Px,� /⌅0Ex,� when �0 ⌅ �p
⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1 and where �C acts as a

reference frequency and will be called the center fre-
quency. These values will be assumed throughout all of
the numerical calculations unless otherwise indicated.
Referring to Fig. 1, one finds essentially four regions of in-
terest: (1) The real part of the index is increasing only
with the frequency; (2) the real and imaginary parts of
the index are very large (near resonance); (3) the real part
of the index is nearly zero and the imaginary part is large;
and (4) the real part of the index is increasing but is less
than one and the imaginary part is nearly zero.

If �0 ⇧ �, then the polarization field takes a simple
form: Px,� ⌅ (⌅0�p

2↵L /�0
2)Ex,� . In this dipole approxi-

mation, Px,� ⌅ ⌅0�dcEx,� and the electrical susceptibility
is constant, so the refractive index is ndc ⌅ (1
⌃ ↵dc)1/2. On the other hand, as the frequency ap-
proaches infinity, clearly the electrical susceptibility goes
to zero. Our interest is mainly in the frequency region
� ⇥ �C , where these approximations are invalid and the
full model must be used.

B. Finite-Difference Time-Domain Formulation
In the FDTD approach the simulation space (region of in-
terest) is discretized into cells of length ⌦ z, and time is
discretized into intervals of length ⌦t. Using the stan-
dard leapfrog in time and the staggered-grid approach,
the electric field is taken at the edge of a cell and at inte-
ger time steps so that Ex(z, t) ⌅ Ex(k⌦ z, n⌦ t) is repre-
sented by Ex

n(k), and the magnetic field is taken at the
center of the cell at half-integer time steps so that
Hy(z, t) ⌅ Hy (k ⌃ 1/2)⌦ z, (n ⌃ 1/2)⌦ t� is represented
by Hy

n⌃1/2(k ⌃ 1/2). The FDTD formulation for the
propagation of 1D electromagnetic waves in the PBG
structure is then obtained directly from Maxwell’s equa-
tions and can be expressed as follows:

Hy
n⌃1/2⇤ k ⌃

1
2 ⌅ ⌅ Hy

n⇤1/2⇤ k ⌃
1
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⇤
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⌦ z
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⌦ z

⌃ Jx
n⌃1/2⇤k ⌥⇥ . (4)

The Lorentz model [Eq. (1)] is incorporated
self-consistently11 into Maxwell’s equations by introduc-
ing the equivalent first-order system through the defini-
tion of the polarization current; i.e.,

Jx ⌅
⌃Px

⌃ t
, (5)

⌃ Jx

⌃ t
⌃ ⇥Jx ⌅ ⌅0�p

2↵LEx ⇤ �0
2Px . (6)

The electric current and the polarization field are taken
at the same spatial location as the electric field, but the
electric current is taken at the same time value as the
magnetic field while the polarization field is taken at the
same time value as the electric field; i.e., Jx(z, t) and
Px(z, t) are represented, respectively, by Jx

n⌃1/2(k) and
Fig. 1. Refractive index versus normalized driving frequency in
the case in which �0 ⌅ �p ⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1.
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and three-dimensional PBG studies, which are currently
in progress. The FDTD approach allows one to obtain
the frequency response of finite PBG structures over a
wide set of frequencies in a single simulation as well as a
complete visualization of the time evolution of all the as-
sociated field and material quantities. Since we are also
currently studying nanostructure waveguides formed
from defects in finite-sized PBG’s, the FDTD approach
permits us to investigate the temporal evolution of the
propagation of the associated electromagnetic guided
waves.

2. FINITE-DIFFERENCE TIME-DOMAIN
SIMULATOR
We assume that the PBG structure varies only along the z
axis and is uniform on any x–y plane. Thus all the elec-
tromagnetic waves are planar, with the electric and mag-
netic fields being constant in any x–y plane and the di-
rection of propagation being along the z axis. We take
these plane waves to be x polarized (electric field along
the x axis and magnetic field along the y axis) throughout.

A. Lorentz Model
To include dispersion in the materials, we introduce the
Lorentz model for the polarization field P. Since the
electric field has the form E ⌅ Exx̂, the polarization field
has the form P ⌅ Pxx̂ and satisfies the equation

⌃2Px

⌃ t2 ⌃ ⇥
⌃Px

⌃ t
⌃ �0

2Px ⌅ ⌅0�p
2↵LEx , (1)

where ⇥ is the damping coefficient, �0 is the resonance
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to the dc value of the electric susceptibility ↵dc as ↵dc
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⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1 and where �C acts as a

reference frequency and will be called the center fre-
quency. These values will be assumed throughout all of
the numerical calculations unless otherwise indicated.
Referring to Fig. 1, one finds essentially four regions of in-
terest: (1) The real part of the index is increasing only
with the frequency; (2) the real and imaginary parts of
the index are very large (near resonance); (3) the real part
of the index is nearly zero and the imaginary part is large;
and (4) the real part of the index is increasing but is less
than one and the imaginary part is nearly zero.
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proaches infinity, clearly the electrical susceptibility goes
to zero. Our interest is mainly in the frequency region
� ⇥ �C , where these approximations are invalid and the
full model must be used.
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sented by Ex

n(k), and the magnetic field is taken at the
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Hy(z, t) ⌅ Hy (k ⌃ 1/2)⌦ z, (n ⌃ 1/2)⌦ t� is represented
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propagation of 1D electromagnetic waves in the PBG
structure is then obtained directly from Maxwell’s equa-
tions and can be expressed as follows:
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electric current is taken at the same time value as the
magnetic field while the polarization field is taken at the
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Px(z, t) are represented, respectively, by Jx

n⌃1/2(k) and
Fig. 1. Refractive index versus normalized driving frequency in
the case in which �0 ⌅ �p ⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1.

R. W. Ziolkowski and M. Tanaka Vol. 16, No. 4 /April 1999 /J. Opt. Soc. Am. A 931

and three-dimensional PBG studies, which are currently
in progress. The FDTD approach allows one to obtain
the frequency response of finite PBG structures over a
wide set of frequencies in a single simulation as well as a
complete visualization of the time evolution of all the as-
sociated field and material quantities. Since we are also
currently studying nanostructure waveguides formed
from defects in finite-sized PBG’s, the FDTD approach
permits us to investigate the temporal evolution of the
propagation of the associated electromagnetic guided
waves.

2. FINITE-DIFFERENCE TIME-DOMAIN
SIMULATOR
We assume that the PBG structure varies only along the z
axis and is uniform on any x–y plane. Thus all the elec-
tromagnetic waves are planar, with the electric and mag-
netic fields being constant in any x–y plane and the di-
rection of propagation being along the z axis. We take
these plane waves to be x polarized (electric field along
the x axis and magnetic field along the y axis) throughout.

A. Lorentz Model
To include dispersion in the materials, we introduce the
Lorentz model for the polarization field P. Since the
electric field has the form E ⌅ Exx̂, the polarization field
has the form P ⌅ Pxx̂ and satisfies the equation

⌃2Px

⌃ t2 ⌃ ⇥
⌃Px

⌃ t
⌃ �0

2Px ⌅ ⌅0�p
2↵LEx , (1)

where ⇥ is the damping coefficient, �0 is the resonance
frequency, �p is the plasma frequency, and ↵L is related
to the dc value of the electric susceptibility ↵dc as ↵dc
⌅ (�p

2↵L)/�0
2. The associated frequency domain expres-

sion

Px,� ⌅
⌅0�p

2↵L

�0
2 ⇤ �2 ⌃ j�⇥

Ex,� (2)

is obtained by Fourier transform of Eq. (1). Figure 1 in-
dicates the relation between the frequency and the refrac-
tive index n(�) ⌅  1 ⌃ ↵(�)�1/2, where the frequency-
domain susceptibility ↵(�) ⌅ Px,� /⌅0Ex,� when �0 ⌅ �p
⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1 and where �C acts as a

reference frequency and will be called the center fre-
quency. These values will be assumed throughout all of
the numerical calculations unless otherwise indicated.
Referring to Fig. 1, one finds essentially four regions of in-
terest: (1) The real part of the index is increasing only
with the frequency; (2) the real and imaginary parts of
the index are very large (near resonance); (3) the real part
of the index is nearly zero and the imaginary part is large;
and (4) the real part of the index is increasing but is less
than one and the imaginary part is nearly zero.

If �0 ⇧ �, then the polarization field takes a simple
form: Px,� ⌅ (⌅0�p

2↵L /�0
2)Ex,� . In this dipole approxi-

mation, Px,� ⌅ ⌅0�dcEx,� and the electrical susceptibility
is constant, so the refractive index is ndc ⌅ (1
⌃ ↵dc)1/2. On the other hand, as the frequency ap-
proaches infinity, clearly the electrical susceptibility goes
to zero. Our interest is mainly in the frequency region
� ⇥ �C , where these approximations are invalid and the
full model must be used.

B. Finite-Difference Time-Domain Formulation
In the FDTD approach the simulation space (region of in-
terest) is discretized into cells of length ⌦ z, and time is
discretized into intervals of length ⌦t. Using the stan-
dard leapfrog in time and the staggered-grid approach,
the electric field is taken at the edge of a cell and at inte-
ger time steps so that Ex(z, t) ⌅ Ex(k⌦ z, n⌦ t) is repre-
sented by Ex

n(k), and the magnetic field is taken at the
center of the cell at half-integer time steps so that
Hy(z, t) ⌅ Hy (k ⌃ 1/2)⌦ z, (n ⌃ 1/2)⌦ t� is represented
by Hy

n⌃1/2(k ⌃ 1/2). The FDTD formulation for the
propagation of 1D electromagnetic waves in the PBG
structure is then obtained directly from Maxwell’s equa-
tions and can be expressed as follows:

Hy
n⌃1/2⇤ k ⌃

1
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The Lorentz model [Eq. (1)] is incorporated
self-consistently11 into Maxwell’s equations by introduc-
ing the equivalent first-order system through the defini-
tion of the polarization current; i.e.,

Jx ⌅
⌃Px

⌃ t
, (5)

⌃ Jx

⌃ t
⌃ ⇥Jx ⌅ ⌅0�p

2↵LEx ⇤ �0
2Px . (6)

The electric current and the polarization field are taken
at the same spatial location as the electric field, but the
electric current is taken at the same time value as the
magnetic field while the polarization field is taken at the
same time value as the electric field; i.e., Jx(z, t) and
Px(z, t) are represented, respectively, by Jx

n⌃1/2(k) and
Fig. 1. Refractive index versus normalized driving frequency in
the case in which �0 ⌅ �p ⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1.
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Lorentz dispersion 
(frequency domain) 

(the same as Drude-model but 
resonance frequency is not at 0)

and three-dimensional PBG studies, which are currently
in progress. The FDTD approach allows one to obtain
the frequency response of finite PBG structures over a
wide set of frequencies in a single simulation as well as a
complete visualization of the time evolution of all the as-
sociated field and material quantities. Since we are also
currently studying nanostructure waveguides formed
from defects in finite-sized PBG’s, the FDTD approach
permits us to investigate the temporal evolution of the
propagation of the associated electromagnetic guided
waves.

2. FINITE-DIFFERENCE TIME-DOMAIN
SIMULATOR
We assume that the PBG structure varies only along the z
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tromagnetic waves are planar, with the electric and mag-
netic fields being constant in any x–y plane and the di-
rection of propagation being along the z axis. We take
these plane waves to be x polarized (electric field along
the x axis and magnetic field along the y axis) throughout.

A. Lorentz Model
To include dispersion in the materials, we introduce the
Lorentz model for the polarization field P. Since the
electric field has the form E ⌅ Exx̂, the polarization field
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⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1 and where �C acts as a

reference frequency and will be called the center fre-
quency. These values will be assumed throughout all of
the numerical calculations unless otherwise indicated.
Referring to Fig. 1, one finds essentially four regions of in-
terest: (1) The real part of the index is increasing only
with the frequency; (2) the real and imaginary parts of
the index are very large (near resonance); (3) the real part
of the index is nearly zero and the imaginary part is large;
and (4) the real part of the index is increasing but is less
than one and the imaginary part is nearly zero.

If �0 ⇧ �, then the polarization field takes a simple
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⌃ ↵dc)1/2. On the other hand, as the frequency ap-
proaches infinity, clearly the electrical susceptibility goes
to zero. Our interest is mainly in the frequency region
� ⇥ �C , where these approximations are invalid and the
full model must be used.

B. Finite-Difference Time-Domain Formulation
In the FDTD approach the simulation space (region of in-
terest) is discretized into cells of length ⌦ z, and time is
discretized into intervals of length ⌦t. Using the stan-
dard leapfrog in time and the staggered-grid approach,
the electric field is taken at the edge of a cell and at inte-
ger time steps so that Ex(z, t) ⌅ Ex(k⌦ z, n⌦ t) is repre-
sented by Ex

n(k), and the magnetic field is taken at the
center of the cell at half-integer time steps so that
Hy(z, t) ⌅ Hy (k ⌃ 1/2)⌦ z, (n ⌃ 1/2)⌦ t� is represented
by Hy

n⌃1/2(k ⌃ 1/2). The FDTD formulation for the
propagation of 1D electromagnetic waves in the PBG
structure is then obtained directly from Maxwell’s equa-
tions and can be expressed as follows:
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The Lorentz model [Eq. (1)] is incorporated
self-consistently11 into Maxwell’s equations by introduc-
ing the equivalent first-order system through the defini-
tion of the polarization current; i.e.,
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The electric current and the polarization field are taken
at the same spatial location as the electric field, but the
electric current is taken at the same time value as the
magnetic field while the polarization field is taken at the
same time value as the electric field; i.e., Jx(z, t) and
Px(z, t) are represented, respectively, by Jx

n⌃1/2(k) and
Fig. 1. Refractive index versus normalized driving frequency in
the case in which �0 ⌅ �p ⌅ �C , ⇥ ⌅ 0.01�C and ↵L ⌅ 1.
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transformation
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FDTD for nonlinear/nondispersive materials

going back to Maxwell’s equations

linear:

non-Linear:

11

r⇥E = �@B

@t

r⇥H =
@D

@t
+ j

r ·D = ⇢

r ·B = 0

D = ✏✏0E

D = ✏0E+P

P = ✏0
h
�̂(1)E+ �̂(2)E2 + �̂(3)E3 + · · ·

i

instantaneous!



example of an instantaneous Kerr          nonlinearity 

D = �0�E (334)
� = n2 (335)

= (n0 + n2|E|2)2 (336)
⇥ n2

0 + 2n0n2|E|2 (337)
(n2 � n0) (338)

E =
D

n2
0 + 2n0n2|E|2 (339)

(340)
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D = �0�E (334)
� = n2 (335)

= (n0 + n2|E|2)2 (336)
⇥ n2

0 + 2n0n2|E|2 (337)
(n2 � n0) (338)

E =
D

n2
0 + 2n0n2|E|2 (339)

(340)
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nonlinear refractive 
index depends on the 
square of the E-Field

D = �0�E (334)
� = n2 (335)

= (n0 + n2|E|2)2 (336)
⇥ n2

0 + 2n0n2|E|2 (337)
(n2 � n0) (338)

E =
D

n2
0 + 2n0n2|E|2 (339)

(340)
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D = �0�E (334)
� = n2 (335)

= (n0 + n2|E|2)2 (336)
⇥ n2

0 + 2n0n2|E|2 (337)
(n2 � n0) (338)

E =
D

n2
0 + 2n0n2|E|2 (339)

(340)
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solution by a Newton 
iterative procedure 

(or direct)

straight forward applicable to instantaneous          media  

12

�̂(3)

�̂(2)

FDTD for nonlinear/nondispersive materials



Boundary conditions

problems appear if the fields at the boundary have to be evaluated

Hx Ey Ez

(finite) computational 
domain

for keeping the discretized mesh treatable 
on a computer, we have to limit its size

for a proper determination of the field 
components that are positioned directly at 
the boundary of the computational domain, 
we need actually information about field 
components outside

but

choosing proper 
boundary conditions

13



easiest boundary conditions: perfectly conducting material (E or H)

field cannot penetrate 
the structure

setting the field values outside 
the structure equal to zero

Hx Ey Ez

(physical grid)

14

Boundary conditions



Floquet-Bloch boundaries for periodic objects (gratings, photonic crystals)

Hx Ey Ez

(physical grid)

Λ Incident plane wave (arbitrary propagation direction)

Floquet-Bloch boundaries in the frequency domain 
(in x-direction)

Boundary conditions

15

EInc / eikxxeikyyeikzze�i!t

E (x+ ⇤x, y, z, t) = E (x, y, z, t) eikx⇤x

amplitude of the field displaced by one unit cell is 
identical, necessary since individual unit cells of a 
periodic structure is indistinguishable

only the phase changes by what is known as the 
Bloch phase



Floquet-Bloch boundaries for calculating the band structure of a PC

geometry of a PC unit cell with cylindrical inclusion

periodic boundary with a particular        andEInc ⇥ eıkxxeıkyyeıkzze�ı�t (200)
⇧⇤(x + m⇥x, y + m⇥y,�) = ⇧⇤(x, y, �)eıkxm�xeıkyn�y (201)
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Boundary conditions



launching an arbitrary field distribution and recording the evolving 
pattern on some discrete points in the space

initial field distribution time evolution of the field
m = 3 (305)
d = 16�x (306)

(� = 13, R = 0.3a) (307)
(308)

13
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Boundary conditions



time evolution of the fieldtime evolution of the field

18

Boundary conditions

launching an arbitrary field distribution and recording the evolving 
pattern on some discrete points in the space

m = 3 (305)
d = 16�x (306)

(� = 13, R = 0.3a) (307)
(308)

13



all the frequencies which do not satisfy the periodic boundaries are 
annihilated and only the modes that are allowed to propagate persist

spectra obtained as a FFT

19

Boundary conditions

time evolution of the field
m = 3 (305)
d = 16�x (306)

(� = 13, R = 0.3a) (307)
(308)
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band structure computation

scanning the k-space and tracing the frequencies that persist as modes 
delivers the band structure via FDTD

20

Boundary conditions

spectra obtained as a FFT
m = 3 (305)
d = 16�x (306)

(� = 13, R = 0.3a) (307)
(308)

13



neglecting the vectorial aspect: each field component obeys a scalar 
wave equation

with

21

Boundary conditions



for propagation in the +/- x-direction the operators are written as

wave propagating in the –x-direction

wave propagating in the +x-direction

Engquist-Madja exact ABC 
(Mathematics of Computation, Vol. 31, 629, 1977)

direct implementation of operator not possible, but the 
square-root  can be expanded as a Taylor-series 22

Boundary conditions



first order approximation

nearly plane wave propagating in x-direction

23

Boundary conditions



Second order approximation

Boundary conditions



writing the differential operators as finite differences 
(G. Mur, IEEE Trans. Electromagnetic Compatibility, Vol. 32, 377, 1981)

discretising the operator a half spatial step in front of the boundary  
(example of the boundary at x=0)

averaging the second time derivatives at x=0 and x=Δx

same holds for the second time derivatives in y and z direction 25

Boundary conditions
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inserting all those difference scheme leads to 
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example for boundary x=0, similar equations for other boundaries

fields have to be stored for 2 different time steps 26

Boundary conditions



simplification by using only the first order Taylor approximation 
(skipping the derivatives along the y and z directions)

EInc ⇥ eıkxxeıkyyeıkzze�ı�t (200)
⇤⇤(x + m⇥x, y + m⇥y,⇥) = ⇤⇤(x, y, ⇥)eıkxm�xeıkyn�y (201)

�(x + ⇥x, y + ⇥y, t) = �

�
x, y,

⇥x

vPh
x

+
⇥y

vPh
y

+ t

⇥
(202)

E(x + ⇥x, y, t) = E(x, y, t)eık�x (203)
m = n = 1 (204)

L�f = ⇧xf � c�1⇧tf = 0 (205)
L�f = ⇧2

xtf � c�1⇧2
ttf + 0.5c(⇧2

yyf + ⇧2
zzf) = 0 (206)

fn+1
0,j,k = �fn�1

0,j,k + k1(fn+1
1,j,k + fn�1

0,j,k) + k2(fn
1,j,k + fn

0,j,k) + (207)
k3y(fn

0,j�1,k � 2fn
0,j,k + fn

0,j+1,k + fn
1,j�1,k � 2fn

1,j,k + fn
1,j+1,k) + (208)

k3z(fn
0,j,k�1 � 2fn

0,j,k + fn
0,j,k+1 + fn

1,j,k�1 � 2fn
1,j,k + fn

1,j,k+1) (209)

k1 =
c�t��x

c�t + �x
(210)

k2 =
2�x

c�t + �x
(211)

k3y =
(c�t)2�x

2�y2(x�t + �x)
(212)

fn+1
0,j,k = �fn�1

0,j,k + k1(fn+1
1,j,k + fn�1

0,j,k) + k2(fn
1,j,k + fn

0,j,k) (213)

9

only the fields components that are evaluated at this (most outer) 
boundary have to be updated with this equation  
(the tangential components of the E-field e.g. at the boundary x=0) 

reflection coefficients are in the order of 10 -2

easy to implement 27

Boundary conditions
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Finite-Difference Time-Domain


