Computational Photonics

Finite-Difference Time-Domain

• most efficient boundary conditions are the PML

• more precise: material property, not an actual boundary

- published by Berenger in 1994 with reflections about 3000 times less than with 2nd order Mur boundary
- basic idea: constructing a media which absorbs light and at whose interfaces with the region of interest no reflections taking place

impedance matching of the medium with the surrounding

• impedance of a medium with electric and magnetic conductivity

 $\eta = \sqrt{\frac{\tilde{\mu}}{\tilde{\epsilon}}} = \sqrt{\frac{\mu' - \iota \mu''}{\epsilon' - \iota \epsilon''}} \qquad \begin{aligned} \epsilon'' &= \frac{\sigma_e}{\omega} & \text{(electrical conductivity)} \\ \mu'' &= \frac{\sigma_m}{\omega} & \text{(magnetic conductivity)} \\ 2 \end{aligned}$

ullet let the loss-less region being region 1, characterised by ϵ and μ

$$\implies$$
 impedance: $\eta = \sqrt{\frac{\mu}{\epsilon}}$

 $^{\rm O}$ if the condition $\frac{\sigma_e}{\epsilon}=\frac{\sigma_m}{\mu}$ holds, the impedances are equal $\eta_l=\eta$

• plane waves propagating in each of the regions are characterised by their propagation constants, given as (by choosing $\epsilon=\epsilon'$ and $\mu=\mu'$)

$$k = \omega \sqrt{\epsilon \mu} \qquad \qquad k = \omega \sqrt{\epsilon \mu} \sqrt{\left(1 - i\frac{\sigma_e}{\omega\epsilon}\right) \left(1 - i\frac{\sigma_m}{\omega\mu}\right)}$$

O phase velocity given by $k = \omega \sqrt{\epsilon \mu} + i \eta \sigma_e$

the same as in free space but light is additionally absorbed 3

• reflections coefficients of the interface are given generally by

$$R_{\perp} = \frac{E_{\perp}^{r}}{E_{\perp}^{i}} = \frac{\eta_{2}\cos\theta_{i} - \eta_{1}\cos\theta_{t}}{\eta_{2}\cos\theta_{i} + \eta_{1}\cos\theta_{t}} \quad R_{||} = \frac{E_{||}^{r}}{E_{||}^{i}} = \frac{\eta_{2}\cos\theta_{t} - \eta_{1}\cos\theta_{i}}{\eta_{2}\cos\theta_{t} + \eta_{1}\cos\theta_{i}}$$
(with $n_{1}\sin\theta_{i} = n_{2}\sin\theta_{t}$)

 \Rightarrow reflection is 0, only if the angle of incidence = the angle of transmittance

 \Rightarrow holds for interface between 2 media sustaining modes with same phase velocity

• following derivation exemplarily for 2D FDTD in TE polarisation

$$\begin{aligned} \epsilon \frac{\partial E_x}{\partial t} + \sigma_e E_x &= \frac{\partial H_z}{\partial y} \\ \epsilon \frac{\partial E_y}{\partial t} + \sigma_e E_y &= -\frac{\partial H_z}{\partial x} \end{aligned} \mu \frac{\partial H_z}{\partial t} + \sigma_m H_z = -\left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) \end{aligned}$$

> absorb light only in one direction, fields shall propagate parallel to surface 4

 ${\rm \bullet}$ Berenger's idea: splitting the H field into a x and y component (x-derivative of the E field drives the H_{zx} component and vice versa)

$$H_z = H_{zx} + H_{zy}$$

• introduction of an anisotropy of all properties

$$\mu \frac{\partial H_{zx}}{\partial t} + \sigma_{mx} H_{zx} = -\frac{\partial E_y}{\partial x} \quad \epsilon \frac{\partial E_x}{\partial t} + \sigma_{ey} E_x = \frac{\partial (H_{zx} + H_{zy})}{\partial y}$$
$$\mu \frac{\partial H_{zy}}{\partial t} + \sigma_{my} H_{zy} = \frac{\partial E_x}{\partial y} \quad \epsilon \frac{\partial E_y}{\partial t} + \sigma_{ex} E_y = -\frac{\partial (H_{zx} + H_{zy})}{\partial x}$$

→ can be shown, that the impedance of the Berenger medium equals the impedance of the free space, regardless of the angle of propagation

→ problem that denies a sudden change in the material properties: electric and magnetic field are evaluated at different spatial positions (staggered grid)

 \implies asymmetric absorption

 \Rightarrow choosing appropriate absorption profile for σ_{ex} and σ_{mx}

polynomial scaling

$$\sigma_{ex} = \left(\frac{x}{d}\right)^m \sigma_{emax}$$

practical considerations

$$2 << m << 6$$

$$d = 10\Delta x \qquad \implies R = 10^{-16}$$

• important: waves propagating along the y-axis are not absorbed in the x-boundary

- splitting the field in the boundaries
- adding the electrical and magnetic conductivity to the equations as material parameters
- only the components normal to the boundary are absorbed, adjusting the proper absorption profile for each component
 - electric and magnetic fields are evaluated a half discretisation step apart, hence the absorption profile is evaluated likewise at different spatial coordinates

J.P. Berenger, Journal of Computational Physics, Vol. 114, 185 (2D)

 \Rightarrow extensions for TM polarisation and 3D are straight forward

$$\begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{ey} \end{pmatrix} E_{xy} = \frac{\partial}{\partial y} (H_{zx} + H_{zy}) \qquad \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{my} \end{pmatrix} H_{xy} = -\frac{\partial}{\partial y} (E_{zx} + E_{zy}) \\ \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{ez} \end{pmatrix} E_{xz} = -\frac{\partial}{\partial z} (H_{yx} + H_{yz}) \qquad \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{mz} \end{pmatrix} H_{xz} = \frac{\partial}{\partial z} (E_{yx} + E_{yz}) \\ \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{ex} \end{pmatrix} E_{yx} = -\frac{\partial}{\partial x} (H_{zx} + H_{zy}) \qquad \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{mx} \end{pmatrix} H_{yx} = \frac{\partial}{\partial x} (E_{zx} + E_{zy}) \\ \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{ez} \end{pmatrix} E_{yz} = \frac{\partial}{\partial z} (H_{xy} + H_{xz}) \qquad \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{mz} \end{pmatrix} H_{yz} = -\frac{\partial}{\partial z} (E_{xy} + E_{xz}) \\ \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{ex} \end{pmatrix} E_{zx} = \frac{\partial}{\partial x} (H_{yx} + H_{yz}) \qquad \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{mx} \end{pmatrix} H_{zx} = -\frac{\partial}{\partial x} (E_{yx} + E_{yz}) \\ \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{ey} \end{pmatrix} E_{zy} = -\frac{\partial}{\partial y} (H_{xy} + H_{yz}) \qquad \begin{pmatrix} \epsilon \frac{\partial}{\partial t} + \sigma_{my} \end{pmatrix} H_{zy} = \frac{\partial}{\partial y} (E_{xy} + E_{yz}) \\ \end{pmatrix}$$

9

J.P. Berenger, Journal of Computational Physics, Vol. 127, 363 (3D)

perfectly conducting boundary

Computational Photonics

Finite-Difference Time-Domain