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Basics of grating theories



Grating theories
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rigorous solution of the diffraction of light at a periodic 
structure, e.g. dielectric gratings, finite photonic crystal 
slabs, arrays of metallic nano particles etc. 

methods 

A) thin element approximation (scalar approximation) 

B) rigorous solutions (Fourier modal method) 

strategy for rigorous solution 

• finding the eigenmodes sustained in the periodic region 

• finding modal amplitudes by matching boundary condition



characterised by a periodic variation of the materials in x and y direction

1D grating 2D grating 
(biperiodic)

(Pictures from the IAP Uni Jena, E. B. Kley)

Final goal calculating diffraction at a grating
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Final goal calculating diffraction at a grating
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Statement of the problem in 2D

nI=1

nI=2
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Statement of the problem in 2D

n I

nII

d

Λ

z

x y0

Direction and amplitude of reflected and transmitted amplitudes?

θ - angle of incidenceEinc,y = exp [ik0nI (sin �x + cos �z)]

TE polarisation

z<0

z>d

EI,y = Einc,y +
�

i

Ri exp [i (kxix� kI,ziz)]

EII,y =
�

i

Ti exp [i (kxix + kII,zi(z � d))]
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Ewald sphere
wave number of each wave is given by
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grating provides a momentum for each diffraction order of 
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integerkxi = i
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incident wave is characterised by



Ewald sphere

diffracted waves 
propagate along

wave number of each wave is given by

incident wave is characterised by

kxi = i
2⇥

�
+ k0nI sin �



Ewald sphere

propagation direction of each diffracted wave 
(applies to all kind of diffraction; X-Ray, grating)
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kxi = i
2⇥

�
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kz



Ewald sphere
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Propagating
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Evanescent
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kxi = i
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Scalar theory and thin element approach

field after the grating is given by the incident field multiplied by the transmission function
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U = E! · y



for a phase grating the amplitude transmission function equals unity and 
the phase is given by

⇥(x, y, z) = n2 + �⇥(x, y, z) (123)

�ı
E(x, y, z)

dz
= PE(x, y, z) (124)

P =
d2

dx2 + d2

dy2 � k2
0�⇥

2nk0
(125)

⇥ = ⇥(x, y) (126)
E(z) = e�ızP E(0) (127)

E(z + h) = e�ıhP E(z) (128)
h (129)

E(z + h) = (I � ıhP )E(z) (130)
eıhP E(z + h) = E(z) (131)

E(z + h) = (I + ıhP )�1E(z) (132)

E(z +
h

2
) = (I � ıhP

2
)E(z) (133)

= (I +
ıhP

2
)E(z + h) (134)

E(z + h) = (I +
ıhP

2
)�1(I � ıhP

2
)E(z) (135)

(136)

⇥(z) = ⇥(z + �) (137)
⇥(x) = ⇥(x + �) (138)

⇥(x, y) = ⇥(x + �x, y + �y) (139)
⇥(x, y, z) = ⇥(x + �x, y + �y, z + �z) (140)

k =
2⌃

⇧0
n =

⌅
k2

x + k2
z (141)

kzI =
2⌃

⇧0
nI cos ⌅ (142)

kxI =
2⌃

⇧0
nI sin ⌅ (143)

kxi = i
⇧

�
(144)

kxi = i
⇧

�
+ k0nI sin ⌅ (145)

kI/II,zi =
⇧

k2
0n

2
I/II � k2

xi (146)

⌥(x) = k0(nII � nI)f(x) (147)

Tn =
⇤ �

0
eık0(nII�nI)f(x)e�ıkxnxdx (148)

Tn = FT (eı�(x)) (149)

⇤R,n = Re

�
kI,zi

k0

⇥
|Rn|2 (150)
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U = E! · y

field after the grating is given by the incident field multiplied by the transmission function

Scalar theory and thin element approach



for normal plane wave illumination the field after the structure is given by

amplitudes of the diffracted waves are given by Fourier series

amplitudes are given by a 
Fourier-transformation of 
the transmission function
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Tn = FT
h
ei�(x)

i

Scalar theory and thin element approach



Diffraction efficiencies

Diffraction efficiency corresponds to the energy transferred into a diffraction order  
normalised to the incident energy  

(given by the Poynting vector)

Introducing the plane waves into the equation leads to

TE:

TM:

Energy 
conservation for 

loss-less 
materials!! 14



Limitations of the scalar method

Amplitude Phase

field after illuminating a sinusoidal grating 
with a plane wave

nI=1

nI=2

nI=1

nI=2

Λ is much larger than λ thin element approach justified

Λ=10λ
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Limitations of the scalar method

nI=1

nI=2

nI=1

nI=2

Λ=2.1λ
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Λ is much larger than λ thin element approach justified

Amplitude Phase

field after illuminating a sinusoidal grating 
with a plane wave



Limitations of the scalar method

phase of the field directly after the grating 
(h=λ, nI=1, nII=2, TE, sinusoidal)

scalar theory fails for periods 
comparable to wavelength and for 
significant grating thicknesses

no proper description of the 
field inside the grating (0<z<d)

have to solve 
Maxwell‘s equations 
properly also for the 

region inside the 
grating
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