Computational Photonics

Basics of grating theories



Grating theories

o rigorous solution of the diffraction of light at a periodic
structure, e.g. dielectric gratings, finite photonic crystal
slabs, arrays of metallic nano particles etc.

O methods

A) thin element approximation (scalar approximation)

B) rigorous solutions (Fourier modal method)

O strategy for rigorous solution

* finding the eigenmodes sustained in the periodic region

* finding modal amplitudes by matching boundary condition

2



Final goal calculating diffraction at a grating

characterised by a periodic variation of the materials in x and y direction
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(Pictures from the IAP Uni Jena, E. B. Kley)



Final goal calculating diffraction at a grating




Statement of the problem in 2D

field distribution around a binary grating (TE)




Statement of the problem in 2D
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Direction and amplitude of reflected and transmitted amplitudes? 6



~wald sphere

wave number of each wave is given by

incident wave is characterised by

grating provides a momentum for each diffraction order of
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~wald sphere

wave number of each wave is given by

incident wave is characterised by

propagate along




~wald sphere
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Scalar theory and thin element approach

field after the grating is given by the incident field multiplied by the transmission function

Ur(xz,y) =T (x,y)Us(z,y) U=E,"y

T(w,y) = |T(x,y)|e ¥
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Scalar theory and thin element approach

field after the grating is given by the incident field multiplied by the transmission function

Ur(xz,y) =T (x,y)Us(z,y) U=E,"y

T(x,y) = |T(z,y)le' ™V

for a phase grating the amplitude transmission function equals unity and
the phase is given by

o(x) = ko(nrr —nr)f()
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Scalar theory and thin element approach

for normal plane wave illumination the field after the structure is given by
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amplitudes of the diffracted waves are given by Fourier series
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amplitudes are given by a
Fourier-transformation of
the transmission function
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Diffraction efficiencies

Ditfraction efficiency corresponds to the energy transterred into a diffraction order

normalised to the incident energy
(given by the Poynting vector)

S=E xH

Introducing the plane waves into the equation leads to
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Limitations of the scalar method

Amplitude A=10A Phase

field after illuminating a sinusoidal grating
with a plane wave

A is much larger than A ——> thin element approach justified
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Limitations of the scalar method

Xini

Amplitude

field after illuminating a sinusoidal grating
with a plane wave

A is much larger than A ——> thin element approach justified
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Limitations of the scalar method
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phase of the field directly after the grating
(h=A, n=1, n,=2, TE, sinusoidal)

O scalar theory fails for periods

comparable to wavelength and for
significant grating thicknesses

O no proper description of the
field inside the grating (0<z<d)

—> have to solve
Maxwell’s equations
poroperly also for the

region inside the
grating
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