Computational Photonics

Basics of grating theories
- interface problem



Field expansion inside the grating

— can be unambiguously written down, e.g., for F,

2Ng

B ] — Z {A; exp|t 02|+ Biexp[—ifi(z — h)|}
[ —

X Z Emmnl exp[i(kmn@x o kmn,yy)]

O plane wave expansion of the [th eigenmode

o Frmni eigenvectors from the eigenvalue problem

O exp |£i;z|forward / backward propagating eigenmodes

O AZ/BZ unknown amplitudes of the eigenmodes

— have to be determined from boundary conditions



Field expansion inside the grating

—> for completeness, the same expansion holds for all fields
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for the electric field



Field expansion inside the grating

—> for completeness, the same expansion holds for all fields
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Incident field in the Fourier space

— assuming plane wave illumination
(arbitrary wave fields in space and time are decomposed)
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Retlected/transmitted tield in the Fourier space
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-nforcing interface conditions

= matching eigenmodes with same tangential wave vector in the
entire structure (omitting the terms exp|t(Kmn .z + Kmn 4 Y)])

— continuity of the tangential electrical field at the interface
between the illuminating space and the grating (2 = 0)

um5m05n0 + Rajmn — Z [Al = Bl eXp(Zﬁlh)] Ea?mnl
[

O x-component of the illuminating field (term 1)
O x-component of the reflected field tield (term 2)

O sum over forward and backward propagating plane wave
contributions to eigenmodes with same Kiyn (term 3)

— four similar equations for all tangential components 7



—nforcing interface conditions at z=0
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Enforcing interface conditions at z=h

—> same interface conditions for the back interface

Z [Al eXp(Zﬁlh) + Bl] Emmnl — Txmn
[
Z [Al eXp(Zﬂlh) =+ Bl] Eymnl — Tymn
[
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[
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[

— eight linear independent equations with eight unknown variables

Ala Bla mena Rymna Rzmna Twmna Tymna and szn

— unigque solution
(Noponen et al., JOSA A, Vol. 11, 2494 1994)



Summary of the algorithm

|

calculate all wave vector components of interest

|

Fourier transforming the permittivity distribution

|

calculating eigenvalues and eigenvectors of eigenmodes
supported by the structure in Fourier space

— solving the system of linear equations that provide the
amplitude of all relevant field components

— calculating quantities of interest, such as diffraction
efficiency and/or field distributions in regions of interest

— note that the algorithm thus far requires invariance of the
structure in the propagation direction 10
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Application examples

0 01 02 03 04
X in pm

1.5

0.5

0 01 02 03 04 0 01 02 03 04
X in pm X in pm

— E-field component 1L to the SRR used for resonance labelling

— £, amplitude 20 nm above the SRR is shown 12



Numerical peculiarities - truncation of the orders

field distribution around a binary grating (TE)




Numerical peculiarities - truncation of the orders

——> for keeping the system of equation treatable in a computer, we have to
imit the number of diffraction orders retained in the calculation

e e e i O rule of thumb: number of
T T R R T propagating orders plus 10

.
o

evanescent orders
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(A=2.5\, h=A\, n=1, n=3, n;=2, TE, sinusoidal)
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ow to handle non-binary gratings

Remember

assumption: no variation of the dielectric function in z-direction

— slicing continuous surface profile into a sufficient number of invariant layers

o field is expanded in each layer
and additional equations for

the boundary conditions are
established

zinh

O for sufficient convergence a
poroper number of slices has to

0 0.2 0.4 0.6 0.8 1 be made taken into account
Xin A
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ow to handle non-binary gratings

Remember

assumption: no variation of the dielectric function in z-direction

——> slicing continuos surface profile into a sufficient number of invariant layers
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15 VS R N R D o s the boundary conditions are
U established

O for sufficient convergence a

poroper number of slices has to
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Number of layers the surface is sliced

(A=2.5A\, h=A\, n=1, n=3, n;=2, TE, sinusoidal)
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ow to handle non-binary gratings
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Figenmodes of a periodic media

Maxwell‘s equations transform to:

iQX(z) = M(z:t, B,0)X(2)  with X(z)=(E,E, H H))

Oz R

Solution: X(z) = T(z)X(0)

Transfermatrix

Addional imposure of Bloch condition 1n the
propagation direction

X(A,) =T(A,)X(0) = exp(ik.A)X(0)

Solution provides a discrete set of modes

kz Zkzap(Ol,,B,a))E(C with peN and (a,f)el.BZ

18



Reterential example: the fishnet
* Frequency dispersion for a high symmetry direction (o=p=0)
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— Excitable with a predominantly y-polarized wave

— Excitable with a predominantly x-polarized wave

= Not excitable due to symmetry constraints




Reterential example: the fishnet
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Fundamental mode classified by min[Im(k )]
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Re(k ) in [um

Reterential example: the fishnet
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The fundamental mode is left handed
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Propagation of bundles

* Bundle as a superposition of eigenmodes

E(r)= Z j da 4, (a)e (r;a)expli(ax+k, z)]
P BZ ~e(x,a)
e Restriction to the fundamental mode

E(r)=e¢,(0;a) j da A (a)expli(ax+k. ,z)]

k. =k (a, a)) 770+771(a a)+Z(a—a,)’ +...

* Paraxial approximation of k,

E(x,z) =
E(x,z)exp(—ia,x)

22



Reterential example: the fishnet

Reminder: frequency dispersion Reminder: angular dispersion
i 4 )
2/ ; W, k,(k,)
: s
N —2| i
_4 i
180 200 220 240

Frequency in [THZ]

23



Re(k,) [um™]

Angular dispersion

"W =W,
4 .
Re(n,)
2_ 4
0
| Re(k,)
B R S S S—"
K, [um~]

" Negative refraction

" W > w, (AA=50nm)

 Re(n,)

K, [um~]

" Positive refraction up to
k,=2.5um!
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Re(k,) [um™]

Angular dispersion

" W= W, " W > W, (AA=50nm)
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Re(n,) Re(n,)
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Ky [um~] K, [um~]
" Negative refraction " Positive refraction
"= Anomalous diffraction = Normal diffraction around
around k =0 k=0
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